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ABSTRACT 
 
The physical, mathematical, and information sciences have developed a number of 
ways to measure complexity and complex systems in the social, biological, and physi-

cal domains. One way of measuring complex systems that might be useful to language 
scientists is the set of tools from the interdisciplinary field known as network science. 
A number of studies that have used the tools of network science to examine various 
aspects of language and language processing are summarized. It is acknowledged that 
much work must be done to use the tools of network science to address the debate 
about the (equal) complexity of languages. However, this work may prove useful to 

language scientists interested in the (equal) complexity of languages, as well as in oth-
er topics about language. Furthermore, the distinct structural characteristics observed 
in networks of several languages to date may also prove useful to network scientists as 
they try to understand how certain structural characteristics influence network dynam-
ics in other domains. Language scientists are urged to embrace the techniques of net-
work science to address the question of the complexity of languages.  
 

KEYWORDS: Language complexity; network science; complex network; small world 
network. 

 

 

In the debate about the (equal) complexity of languages, a common question 

that is asked is: how does one actually measure the complexity of a lan-

guage? Various approaches have been taken to measure the complexity of the 

phonological, morphological, and syntactic components of language. For ex-

ample, in terms of phonological complexity one can measure and compare 

across languages the typical length of words in a language, the size of the 

phoneme inventory in a language, and the typical syllable structures in a lan-

guage. One can also compare across languages metrical characteristics (e.g., 

Fenk-Oczlon and Fenk 2010). However, the measures that one makes in the 
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phonological system are very different from those measures that one makes 

in the metrical system, or the morphological system, or the syntactic system, 

making it difficult to compare across the systems in a like for like way. In 

what follows, we will explore an alternative approach that may allow lan-

guage scientists to make measurements in the phonological, morphological, 

and syntactic components of language that can be compared in a like for like 

way. Furthermore, these same measures can be performed across languages 

enabling language scientists to compare the relative complexity of languages.  

A number of physical, mathematical, and information sciences have fo-

cused on how to measure complexity and complex systems in the social, bio-

logical, and physical domains. These fields have developed several ways to 

measure complexity including Kolmogorov complexity, Lyapunov expo-

nents, and entropy, but it is not clear how well-suited many of these 

measures of physical or informational complexity are to measuring certain 

aspects of language. There is, however, one approach that is used to measure 

complexity in the social, biological, physical, and other domains that may 

prove useful in examining certain aspects of language complexity, namely, 

the statistical and mathematical tools developed in the interdisciplinary field 

known as network science.  

In network science (for an introduction, see Newman 2010), nodes (or 

vertices) are used to represent individual entities, and connections (edges or 

arcs) are used to represent relationships between entities, forming a web-like 

structure, or network, of the entire system. In the simplest case, the connec-

tions denote bi-directional relationships, in which case the connections are re-

ferred to as edges, but connections can also denote uni-directional relation-

ships, in which case the connections are referred to as arcs. For example, a so-

cial group could be represented as a network with a node representing each 

person in the group. If a relationship between people is bi-directional – for ex-

ample, I call you a friend, and you call me a friend – then edges can be placed 

between nodes that are “friends” with each other. However, if relationships 

are uni-directional – for example, I would loan some money to you, but you 

would not be willing to loan some money to me – then arcs (sometimes called 

directed links) would be placed between nodes in the social system.  

Network science has been used to measure various parts of the language 

system. For example, Mukherjee et al. (2009), created a network to explore 

how the phoneme inventories of the languages of the world self-organize, 

leading to similar patterns across languages. In this network a node corre-

sponded to a consonant found in the languages of the world, and a connec-

tion was placed between nodes if those consonants occurred together in a 
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language. In this case the connection was weighted to indicate the number of 

languages in which those two nodes co-occurred. 

One can also construct a language network such that each node repre-

sents an individual word-form. Connections between nodes in this case could 

indicate that two word-forms are phonologically similar to each other (Vi-

tevitch 2008) or orthographically similar to each other (Kello and Beltz in 

press). A useful bibliography of research using networks to study various as-

pects of language can be found at: http://www.lsi.upc.edu/~rferrericancho/

linguistic_and_cognitive_networks.html. A quick review of that website in-

dicates that many of the components of language that are typically part of the 

debate on the (equal) complexity of languages, such as morphology (Liu and 

Xu 2011) and syntax (Amancio et al. 2012), can be and have been explored 

with the network science approach. (For discussion of the assumptions that 

accompany using nodes, edges, and a network as a representational frame-

work in various domains, see Butts 2009.) 

A central tenet of network science is that the dynamics of a system are 

constrained by the structure of the system (as represented by a network; 

Watts and Strogatz 1998). Networks have been used in a number of domains 

to examine the dynamics of those complex systems. For example, networks 

have been used to understand the spread of information or disease in social 

groups (Kamp et al. 2013).  

One can also examine how changes to the network influence the dynam-

ics of a system. For example, Montoya and Solé (2002) created a network of 

an ecosystem to examine how the extinction of a given species might affect 

the rest of the ecosystem. In that network, nodes in the network represented 

the different animal species in the ecosystem, and arcs (also called directed 

links) were used to represent the predator–prey relationship between animal 

species (i.e., who eats who). Montoya and Solé observed that the extinction 

of certain species would have little effect on the larger ecosystem, whereas 

the extinction of certain other species would be devastating not only to the 

species directly connected to them, but the loss of those species would have 

significant repercussion throughout the rest of the ecosystem.  

Although the network metaphor is somewhat intuitive, the interdiscipli-

nary field of network science is more than just a metaphor because it offers a 

number of mathematical and computational tools that can be used to measure 

complex systems. Measurements can be made at various scales of a complex 

system, including the micro-level, the macro-level, and the meso-level. 

At the micro-level, individual agents in a complex system can be exam-

ined. Common measures at the micro-level include degree, clustering coeffi-
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cient, and several measures of centrality. Degree is the number of connec-

tions that a node has to other nodes. The clustering coefficient measures the 

extent to which the neighbors of a given node are also neighbors of each oth-

er (for a more precise definition see Watts and Strogatz 1998). There are sev-

eral measures of centrality – degree centrality, closeness centrality, between-

ness centrality, and eigenvector centrality – but each attempts to capture in 

some way the relative importance of a node in a network.  

At the macro-level, measurements can be made that describe the over-all 

structure of the system. One common approach to describing the overall struc-

ture of the network is to compute “average” measures (i.e., the mean) across 

the entire network for degree, shortest path length (i.e., how many connec-

tions must one traverse to get from node A to node B), and clustering coeffi-

cient in order to classify the overall structure of the system as exhibiting 

small-world characteristics. In a small-world network one observes in that 

network: (1) an average path length that is similar to the average path length 

of a network with the same number of nodes, but with connections placed 

among the nodes at random, and (2) an average clustering coefficient that is 

much larger than the average clustering coefficient of a network with the same 

number of nodes, but with connections placed among the nodes at random.  

Another common class of network is known as a scale-free network. In a 

scale free network one observes that there are many nodes with few connec-

tions, and a small number of nodes with many, many connections (such that a 

frequency distribution of the degree of each nodes follows a power-law with 

an exponent that falls between 2–3). For a brief review of network science 

and its application to the cognitive sciences, especially to language, see 

Baronchelli et al. (2013). 

At the meso-level measurements describe the network at scales between 

the micro- and macro-levels. Typically at the meso-level one uses communi-

ty detection algorithms to look for sub-groups that may exist within a larger 

system. For a study examining the community structure found in a network 

of phonological word forms see Siew (2013). Interestingly, Siew (2013) sug-

gested that the communities found in the network of phonological word 

forms (i.e., the network examined in Vitevitch 2008) may prevent activation 

from spreading throughout the entire lexicon during the recognition of spo-

ken words. That is, activation of a target word may easily spread to similar 

sounding competitors in the same community, but that activation may not 

spread as easily to words in other communities, thereby restricting the num-

ber of potential lexical competitors that must be evaluated during word 

recognition. 
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Although network science does not provide a single, global measure of 

complexity it can be used to measure different systems within a language 

(e.g., phonology, morphology, syntax), and the micro-, meso-, and macro-

levels of those systems in a like for like manner. In addition, one can also use 

network science to make like for like comparisons across languages. 

Arbesman et al. (2010) did such a cross-language analysis of the phonologi-

cal word-form networks of English, Spanish, Mandarin, Hawaiian, and 

Basque. (In the phonological word-form networks a node corresponded to a 

word-form, and a connection was placed between nodes that were phonolog-

ically similar to each other as defined in Vitevitch 2008.) Although the num-

ber of languages examined was small, the languages differed from each other 

in a number of interesting ways, including the language family that each lan-

guage belongs to, the typical length of words in each language, the size of the 

phoneme inventory, canonical syllable structure, and morphological produc-

tivity, among other things.  

Some of the network measures reported in Arbesman et al. (2010) are re-

produced in the present paper in Table 1 for the convenience of the reader. Of 

the measures presented in Table 1 assortative mixing by degree (Vitevitch et 

al. 2014), path length (see Iyengar et al. 2012; and Vitevitch et al. in press), 

and clustering coefficient (Chan and Vitevitch 2009, 2010) have been shown 

in various psycholinguistic experiments and analyses to influence lexical 

processes such as word retrieval during spoken word recognition and spoken 

word production.  

In comparing a given network measure in Table 1 across the different 

languages one might observe that there is some variability even in this lim-

ited sample of languages. Consider the average-shortest-path length in the 

giant component of the five languages. Hawaiian has a value of 5.5 (meaning 

that when any two nodes in the giant component are selected, it takes, on av-

erage, 5.5 links to get from one node to the other), whereas Spanish has a 

value of 10.3.  

To better assess the differences across languages in a given network measure 

it is imperative to make these measurements in many more languages than 

the handful of languages sampled in Arbesman et al. (2010) in order to obtain 

a distribution for a given network measure that could be used for comparison 

and statistical analysis. Such a distribution would provide necessary infor-

mation about how numerically different two values need to be in order to be 

considered statistically different from each other. In analyses such as this, 

network science could be used to address arguments regarding the absolute 

complexity of various languages. 
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Table 1. A selection of the data presented in Arbesman et al. (2010). 
GC = giant component. 

 

 English Spanish Mandarin Hawaiian Basque 

Network Size 
 (number of words) 

19,323 122,066 30,086 2,578 99,321 

Giant Component Size 
 (proportion) 

6,498 
(0.34) 

44,833 
(0.37) 

19,712 
(0.66) 

1,406 
(0.55) 

35,173 
(0.35) 

Mixing by Degree +0.66 +0.76 +0.65 +0.56 +0.72 

Average Shortest-Path-
Length (GC) 

6.1 10.3 10.1 5.5 10.4 

Clustering Coefficient 0.28 0.19 0.38 0.24 0.21 

 

 

Other work has examined further the implications for psycholinguistic 

processing of several network measures. Work in my lab has demonstrated 

that the (local) clustering coefficient influences speech perception (Chan and 

Vitevitch 2009), speech production (Chan and Vitevitch 2010), certain as-

pects of short- and long-term memory (Vitevitch et al. 2012), and word-

learning (Goldstein and Vitevitch 2014). We have also examined how assort-

ative mixing by degree (Vitevitch et al. 2014), and path length (Vitevitch et 

al. in press) influence lexical processes such as word retrieval during spoken 

word recognition and spoken word production. However, there remain a 

number of other network measures that may also be shown to influence pro-

cessing in some way, and may prove useful for increasing our understanding 

of language processing in general. Furthermore, psycholinguistic studies of 

how various network science measures influence language processing might 

provide a bridge between the idea of absolute complexity and the idea of rel-

ative or functional complexity differences among languages.  

Future studies would need to look at a variety of network science 

measures, how those measures related to psycholinguistic processing, and at 

the processing consequences for a difference in those measures across lan-

guages. For example, does the difference in average-shortest-path length – re-

turning to our observation about Hawaiian and Spanish – mean that it might 

take longer to retrieve a word in a language with a longer average-shortest-

path length than in a language with a shorter average-shortest-path length? 

Crucially, the debate about the (equal) complexity of languages tends to 

focus on issues related to morphology and syntax. Network science measures 

of various aspects of morphology and syntax would need to be made across 

languages to be able to contribute to the debate on the (equal) complexity of 
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languages. Thus, there is some additional work required before the tools of 

network science can be used to fully address the question of the (equal) com-

plexity of languages.  

However, the work that must be done to use the tools of network science 

to compare different languages may also be useful to language scientists at-

tempting to address questions in addition to the (equal) complexity of lan-

guages. Consider the clustering coefficient, which measures the extent to 

which phonological neighbors of a word are also neighbors with each other. 

The clustering coefficient ranges from 0 (meaning none of the neighbors of a 

word are neighbors with each other) to 1 (meaning all of the neighbors of a 

word are neighbors with all of the other neighbors). However, the average 

values for the clustering coefficient in Table 1 are distributed around .2. Ob-

taining these network measures on a larger sample of languages may help 

language scientists better define the limits of human language, and further 

distinguish human language from other complex forms of communication.  

Making various network measures across a number of languages is, of 

course, very time-consuming, but such information may also prove useful to 

network scientists. For example, the values for a given network measure in 

Table 1 fall within a limited range of the possible values that could be ob-

served for that measure. Consider mixing by degree, which is determined by 

the Pearson correlation coefficient of the degrees at the end of an edge. Re-

call that the correlation coefficient ranges from −1 to +1, but the values ob-

served in Table 1 are all positive and close to .5. As noted in Arbesman et al. 

(2010), the values observed in the language networks are higher than the val-

ues that are typically observed in other networks found in the real world. The 

networks of these languages provide network scientists with examples of sys-

tems that exhibit certain distinctive structural characteristics whose unique 

consequences on processing could be explored via computer simulation (or 

via psycholinguistic experiments as in Vitevitch et al. 2014).  

The question of how to compare in a like for like way across language 

networks that vary in size and other characteristics may also challenge net-

work scientists to develop new techniques to facilitate such comparisons. 

These techniques would not only be useful for comparing amongst networks 

of words, but could also be used to compare amongst networks that represent 

any kind of system. Some work on the issue of comparing the structure of 

two or more networks has been done by Faust and Skvoretz (2002), by Rob-

ins et al. (2007), and others, but there appears to be much work still to do on 

this issue. Thus, the benefits of carrying out the additional work of measuring 

a larger sample of languages (or language networks) might be manifold.  
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As attested by some of the work listed in the reference section of this 

brief article, the tools of network science have been used to examine syntax 

and morphology, making network analyses a potentially useful contribution 

to the debate about the (equal) complexity of languages. As attested by other 

work listed in the reference section of this brief article – the attentive reader 

will notice the prevalence of physical science journals in the reference sec-

tion – the debate about the (equal) complexity of languages has caught the 

interest and attention of researchers from a variety of fields, not just Linguis-

tics. As language scientists we should learn how to use the tools of network 

science as well as the other methods developed by physical, mathematical, 

and information scientists to measure complexity to contribute to the debate 

about the (equal) complexity of languages in a linguistically-informed way. 

We should not cede this debate to researchers in other fields. 
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