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a b s t r a c t

Network science draws from a number of fields to examine complex systems using nodes to
represent individuals and connections to represent relationships between individuals to
form a network. This approach has been used in several areas of Psychology to illustrate
the influence that the structure of a network has on processing in that system. In the present
study the concept of keyplayers in a network (Borgatti, 2006) was examined in the domain
of Psycholinguistics. Keyplayers are nodes in a network that, when removed, result in the
network fracturing into several smaller components. A set of such nodes was found in a
network of phonological word-forms as was another set of foil words, comparable to the
‘‘keywords’’ on a number of lexical and network characteristics. In three conventional
psycholinguistic tasks keywords were responded to more quickly and accurately than the
foils. A similar trend was observed in an analysis of the keywords and foils (and another
set of foils) in the English Lexicon Project. These results open avenues for further exploration
of keywords in various areas of language processing, and demonstrate the utility of the
network science approach to psycholinguistics and psychology more generally.

� 2014 Elsevier Inc. All rights reserved.

Introduction

Network science draws from mathematics, sociology,
social psychology, computer science, physics and a number
of other fields to examine complex systems using nodes (or
vertices) to represent individual entities, and connections
(or edges) to represent relationships between entities, to
form a web-like structure, or network, of the entire system
(for introductions to network science see Boccaletti, Latora,
Moreno, Chavez, & Hwang, 2006, and Brandes, Robins,
McCranie, & Wasserman, 2013). This approach has a long
history of use in analyses of social groups (i.e., Social
Network Analysis; see Watts, 2004), but has been used
more recently to examine complex systems in a variety

of other domains including the economy, biology, and
technology (Barabási, 2009). More relevant to the
psychological sciences, this approach has increased our
understanding of connectivity in the brain (Sporns, 2010),
the diagnosis of psychological disorders (Cramer, Waldorp,
van der Maas, & Borsboom 2010), and the cognitive
processes and representations involved in semantic
memory (Steyvers & Tenenbaum, 2005) and human
collective behavior (Mason, Jones, & Goldstone, 2008).

Although network analogies have been used in the
psychological sciences in the past—artificial neural networks
(Rosenblatt, 1958), networks of semantic memory
(Quillian, 1967), and network-like models of language
(e.g., linguistic nections: Lamb, 1970; Node Structure
Theory: MacKay, 1992)—network science differs from
these previous network approaches in that network science
is equal parts theory and equal parts methodology: ‘‘. . .

networks offer both a theoretical framework for under-
standing the world and a methodology for using this
framework to collect data, test hypotheses, and draw
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conclusions’’ (Neal, 2013; p. 5). Regarding methodology,
network science offers a wide array of statistical and com-
putational tools to analyze individual agents in a complex
system (often referred to as the micro-level), characteristics
of the over-all structure of a system (often referred to as the
macro-level), as well as various levels in between (often
referred to as the meso-level). Network science also offers
a theoretical framework for interpreting observations made
at and between each level within a system. More important,
this theoretical framework allows one to extend predic-
tions to systems with similar network characteristics, but
occurring in different domains. To illustrate this point and
foreshadow the present work, one can take a finding from
a network of a social system, and test an analogous predic-
tion in a network of a cognitive system.

In the cognitive domain, Vitevitch (2008) applied the
tools of network science to the mental lexicon by creating
a network with approximately 20,000 English words as
nodes, and connections between words that were phono-
logically similar (using the one-phoneme metric used in
Luce & Pisoni, 1998). Fig. 1 shows a small portion of this
network (see Steyvers and Tenenbaum (2005) for a lexical
network based on semantic rather than phonological
relationships among words).

Network analysis of the English phonological network
revealed several noteworthy characteristics about the
structure of the mental lexicon. Specifically, Vitevitch
(2008) found that the phonological network had: (1) a
large highly interconnected component, as well as many
islands (words that were related to each other—such as

faction, fiction, and fission—but not to other words in the
large component) and many hermits, or words with no
neighbors (known as isolates in the network science
literature); the largest component exhibited (2) small-
world characteristics (that is, relative to a random graph
the lexical network had a ‘‘short’’ average path length
and a high clustering coefficient; Watts & Strogatz, 1998),
(3) assortative mixing by degree (a word with many
neighbors tends to have neighbors that also have many
neighbors; Newman, 2002), and (4) a degree distribution
that deviated from a power-law.

Arbesman, Strogatz, and Vitevitch (2010) found the
same constellation of structural features in phonological
networks of Spanish, Mandarin, Hawaiian, and Basque,
and elaborated on the significance of these characteristics.
For example, the giant component of the phonological
networks contained, in some cases, less than 50% of the
nodes; networks observed in other domains often have
giant components that contain 80–90% of the nodes.
Arbesman et al. (2010) also noted that assortative mixing
by degree is found in networks in other domains. However,
typical values for assortativity in social networks range
from .1 to .3, whereas the phonological networks examined
by Arbesman et al. were as high as .7. Finally, most of
the languages examined by Arbesman et al. exhibited
degree distributions fit by truncated power-laws (but the
degree distribution for Mandarin was better fit by an expo-
nential function). Networks with degree distributions that
follow a power-law are called scale-free networks, and have
attracted attention because of certain structural and

Fig. 1. A sample of words from the phonological network analyzed in Vitevitch (2008). The word ‘‘speech’’ and its phonological neighbors (i.e., words that
differ by the addition, deletion or substitution of a phoneme) are shown. The phonological neighbors of those neighbors (i.e., the 2-hop neighborhood of
‘‘speech’’) are also shown.
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dynamic properties (Albert & Barabási, 2002). See work by
Amaral, Scala, Barthélémy, and Stanley (2000) for the impli-
cations on the dynamic properties of networks with degree
distributions that deviate from a power-law in certain
ways.

One of the fundamental assumptions of network science
is that the structure of a network influences the dynamics
of that system (Watts & Strogatz, 1998). A certain process
might operate very efficiently in a network with a certain
structure. However, in a network with the same number
of nodes and same number of connections—but with those
nodes connected in a slightly different way—the same
process might now be woefully inefficient. If word-forms
in the mental lexicon are indeed stored like a network in
memory, then we should be able to observe an influence
of certain network characteristics on language-related
processes. Indeed, there is an accumulating amount of
psycholinguistic evidence for network measures—degree,
clustering coefficient, closeness centrality, and assortative
mixing by degree—influencing language-related processes.

Degree refers to the number of connections incident to a
given node. In the context of a phonological network like
that of Vitevitch (2008), degree corresponds to the number
of word-forms that sound similar to a given word. Many
psycholinguistic studies have shown that degree—better
known in the psycholinguistic literature as phonological
neighborhood density—influences spoken word recognition
(Luce & Pisoni, 1998), spoken word production (Vitevitch,
2002), word-learning (Charles-Luce & Luce, 1990; Storkel,
2004), and phonological short-term memory (Roodenrys,
Hulme, Lethbridge, Hinton, & Nimmo, 2002). Our discus-
sion of the micro-level measure known as degree is not
meant to suggest that the network view of the lexicon
has ‘‘discovered’’ something that is already well-known
(i.e., effects of phonological neighborhood density on pro-
cessing). Rather, we discuss degree/neighborhood density
because it is important to show that a new theoretical
framework can account not only for new findings that
previous approaches cannot, but to show that the new
theoretical framework can account for well-known
findings that were accounted for by previous approaches
as well (see Vitevitch, Ercal, and Adagarla (2011) for
evidence from a computer simulation that the network
approach accounts for the influence of degree/neighborhood
density in spoken word recognition).

Clustering coefficient is another micro-level metric that
measures the extent to which the neighbors of a given node
are also neighbors of each other. (As shown in Vitevitch,
Chan, and Roodenrys (2012) degree and clustering
coefficient are not correlated in the phonological network
of English.) When clustering coefficient is low, few of the
neighbors of a target node are neighbors of each other.
When clustering coefficient is high, many neighbors of a
target word are also neighbors with each other. The results
of several studies—using a variety of conventional
psycholinguistic and memory tasks, as well as computer
simulations—demonstrated that clustering coefficient
influences language-related processes like spoken word
recognition (Chan & Vitevitch, 2009), word production
(Chan & Vitevitch, 2010), retrieval from long-term memory,
and the use of representations in long-term memory to

reconstruct representations (a process known as redinte-
gration) in short-term memory (Vitevitch et al., 2012).

Importantly, Chan and Vitevitch (2009) demonstrated
in a computer simulation of the TRACE (McClelland &
Elman, 1986) and Shortlist (Norris, 1994) models of spoken
word recognition (as implemented in jTRACE; Strauss,
Harris, & Magnuson, 2007) that the processes and repre-
sentations described in widely accepted models of spoken
word recognition were not able to account for the influ-
ence of clustering coefficient on spoken word recognition.
However, the computer simulation reported in Vitevitch
et al. (2011) was able to do so by implementing a very sim-
ple diffusion mechanism on a network representation of
the lexicon. Furthermore, the network simulation of the
mental lexicon simulated in Vitevitch et al. (2011) also
found independent influences of degree/neighborhood
density and clustering coefficient, further indicating that
these are separate measures.

Closeness centrality is one type of centrality measure
(others being degree centrality, betweenness centrality,
and eigenvector centrality) that attempts to capture in
some way which nodes are ‘‘important’’ in the network
(and can, therefore, be classified as another measure of
the micro-level of a system). Closeness centrality assesses
how far away other nodes in the network are from a given
node.2 A node with high closeness centrality is very close to
many other nodes in the network, requiring that, on average,
only a few links be traversed to reach another node. A node
with low closeness centrality is, on average, far away from
other nodes in the network, requiring the traversal of many
links to reach another node.

Using a game called word-morph, in which participants
were given a word, and asked to form a disparate word by
changing one letter at a time, Iyengar, Madhavan, Zweig,
and Natarajan (2012) demonstrated the importance of
words with high closeness centrality in a network of the
orthographic lexicon. For example, asked to ‘‘morph’’ the
word bay into the word egg participants might have chan-
ged bay into bad-bid-aid-add-ado-ago-ego and finally into
egg. Once participants in this task identified certain ‘‘land-
mark’’ words in the lexicon—words that had high closeness
centrality, like the word aid in the example above—the
task of navigating from one word to another became
trivial, enabling the participants to solve subsequent
word-morph puzzles very quickly. The time it took to find
a solution dropped from about 10–18 min in the first 10
games, to about 2 min after playing 15 games, to about
30 s after playing 28 games, because participants would
‘‘morph’’ the start-word (e.g., bay) into one of the landmark
words that were high in closeness centrality (e.g., aid), then
morph the landmark-word into the desired end-word (e.g.,
egg). Although this task is a contrived word-game rather
than a task that assesses on-line lexical processing, the

2 Closeness centrality is defined as the inverse of the sum of distances
from that node to all other reachable nodes in the network. More precisely:

Closeness ðiÞ ¼ 1
P

jdij

where i is the node of interest, j is another node in the network, and dij is

the shortest distance between these two nodes.
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results of Iyengar et al. (2012) nevertheless support the
idea that (orthographic) word-forms may indeed be
organized like a network in the mental lexicon, and that
the tools of network science can be used to provide
insights about cognitive processes and representations.

Turning to macro-level measures of a network,
Vitevitch, Chan, and Goldstein (2014) found evidence in
computer simulations, and in naturally occurring and
laboratory-induced speech perception errors for an influ-
ence of assortative mixing by degree on language-related
processes. Mixing describes a preference for how nodes
in a network connect to each other. This preference can
be based on a variety of characteristics. For example in a
social network, mixing may occur based on age, gender,
race, etc. In addition to gender or age, nodes in a network
may exhibit a preference for mixing based on degree, or
the number of edges incident on a vertex.

Assortative mixing (a.k.a. homophily) means that ‘‘like
goes with like.’’ Again using the example of a social net-
work, people of similar age tend to connect to each other.
Disassortative mixing means that dissimilar entities will
tend to be connected. For example, in a network of a heter-
osexual dating website, males and females would be con-
nected, but not males and males, nor females and
females. It is also possible that no mixing preferences are
observed in a network. Putting all of these terms together,
assortative mixing by degree refers to the tendency of a
highly connected node to be connected to other highly
connected nodes, and nodes with few connections to be
connected to nodes that also have few connections
(Newman, 2002).

Using computer simulations, analysis of a slips-of-
the-ear corpus, and three psycholinguistic experiments
that captured certain aspects of lexical retrieval failures,
Vitevitch et al. (2014) found that the neighborhood density
(i.e., number of words that sound similar to a word) of the
erroneously retrieved word and the target word were
positively correlated. This macro-level measure, used in
the network science literature to assess mixing by degree,
indicated that the phonological lexicon also exhibits
assortative mixing by degree. What is important about
the findings of Vitevitch et al. is that this pattern was
observed in behavioral data, indicating that the underlying
structure of the lexicon influences how listeners recover
from instances of failed lexical retrieval. (See also addi-
tional analyses by Vitevitch, Goldstein, & Johnson, in press.)

With increasing evidence for the phonological lexicon
exhibiting a network-like structure, and for the structure
of that lexical network influencing various language-
related processes, we considered how another macro-level
measure of network structure that has been of practical
value in the social domain—key players in the network
(Borgatti, 2006)—might influence processing in the
cognitive domain of spoken word recognition.

Borgatti (2006) describes two aspects of the key player
problem: (1) the positive key player problem and (2) the
negative key player problem. In the positive key player
problem, one wishes to identify a set of nodes in a network
that are connected to other nodes in the network in such a
way that they facilitate the spread of information, best
practices, fads/fashions, etc. through the entire network.

This idea is conceptually similar to the work done by Burt
(2004) on ‘‘brokers’’ of information and ideas who act as a
bridge between two different groups of people, thereby
allowing innovation to spread across the network. What
makes key players different from brokers, is what Borgatti
(2006) refers to as the ensemble issue: selecting a set of k
nodes that, as an ensemble, optimally solves the positive
key player problem, is different from selecting the k nodes
that individually are optimal.

To further elaborate on the ensemble issue, consider the
example of selecting gymnasts for two meets. At the first
meet, the coach is allowed to bring as many athletes to
the competition as he or she wishes. In this case, the coach
brings the best athlete on the vault, the best athlete on
the rings, the best athlete on the balance beam, the best
athlete on the high bar, etc., resulting in a different ‘‘best’’
athlete being selected for each event, and a very large team
of ‘‘all-stars’’ attending the meet.

At the second meet, however, the rules of the
competition limit the size of the team to a small number
of athletes, say 3. In this case, the team that goes to the
event might look very different from the team that went
to the first meet—and not just in the number of athletes
that attend. For the second meet, none of the ‘‘best’’
athletes that competed in the first meet are on the team
for the second meet, because at the second meet each
athlete must compete in more than one event. The best
athlete on the vault, who competed in the first meet,
may be horrible at the rings. However, the second best
athlete on the vault may be much better on the rings,
giving that athlete a higher probability of being selected
for the team going to the second meet than the ‘‘star’’
athlete on the vault. It is this idea of the ‘‘whole being
greater than the sum of its parts’’ that distinguishes the
positive key player problem (Borgatti, 2006) from the
conceptually similar idea of brokers (Burt, 2004). The key
player problem is analogous to the gymnastics coach
selecting a small team of good all-around competitors,
whereas the work on brokers is analogous to the
gymnastics coach selecting a team of ‘‘all-stars.’’

We turn now to the other aspect of the key player
problem described by Borgatti (2006), the negative key
player problem—which is the focus of the present investi-
gation—and distinguish this concept from similar concepts
in network science. In the negative key player problem, one
wishes to identify a set of nodes in a network such that
their removal from the network results in maximal fractur-
ing of the network into several smaller components, caus-
ing disruption in the spread of activation or information, or
perhaps, in the case of a network of a business, the collapse
of the whole organization.

In the social domain, the negative key player problem
can be illustrated with examples from public health and
law enforcement. In the area of public health, consider
the case of a disease that is transmitted from person to
person, and the not unreasonable constraint that one
cannot immunize the entire population. In this context
the negative key player problem refers to the subset of indi-
viduals in the population who should be ‘‘removed’’ from
the population—either via quarantine or immunization—
to hinder the spread of the disease. In a law enforcement
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context, consider a network of terrorists who are
communicating to coordinate an attack. Only a small
number of individuals can be arrested or otherwise
‘‘neutralized.’’ Which subset of individuals will result in
maximum confusion and disarray when removed from
the terrorist organization?

To graphically illustrate the concept of keyplayers,
consider the network shown in Fig. 2 (which is adapted
from Borgatti, 2006). Node 1 appears to be very
‘‘important’’ because it connects to many other nodes in
the network. Removing node 1 (and its connections) from
the network, however, does not ‘‘fracture’’ the network
(or in network science terminology, partition the network).
Information (or disease, etc.) can still get from node 2 to
nodes 8–12; granted the pathway from node 2 to nodes
8–12 is longer now, but a path still exists between those
nodes. Now consider what happens if node 8 (and its
connections) is removed from the network. We are now left
with two smaller components (one comprised of nodes
1–7, and the other comprised of nodes 9–12) that cannot
communicate with each other because there is no path that
connects them, resulting in a much more significant
disruption to the system than what occurs when node 1 is
removed.

The removal of nodes from a network in the negative
key player problem sounds similar to the concept of a
cut-edge or a cut-vertex in network analysis. In a cut-edge,
a connection is removed in a network to partition the
network. In a cut-vertex, a node (and the connections to
and from it) is removed from the network. What again sep-
arates the negative key player problem from the similar
concepts of cut-edges and cut-vertices is the ensemble
issue described by Borgatti (2006). The set of nodes whose
removal causes maximal partitioning of the network may
differ from a list of nodes that simply lead to one part of
the network being disconnected from another part of the
network. Imagine if the connections to node 2 were
removed from Fig. 2. The removal of these connections
would result in node 2 being isolated from nodes 1, and
nodes 3–12. Preventing node 2 from communicating with
the rest of the network could disrupt processing in the
system. But such a ‘‘cut’’ is not likely to be as disruptive

as the removal of nodes like node 8 from the system,
whose removal prevents nodes 1–7 in the network from
communicating with nodes 9–12 in the network. See
Borgatti (2006) for a more extensive discussion of how
key players differ from related concepts in network
science.

Turning now to the cognitive domain, we wondered if an
analogous set of words existed in the mental lexicon. That
is, is there a set of ‘‘keywords’’ that play an important role
in holding the lexical network together? If such words do
indeed exist in the lexicon, how might they influence
lexical processing? The existence of such words in the
lexicon could provide new insight into various develop-
mental or acquired language disorders. In individuals with
acquired language disorders, including various types of
aphasia, treatments that focus on the re-acquisition or
rehabilitation of such keywords could facilitate language
recovery. In individuals learning a (first or second)
language, introducing keywords early in the process could
accelerate (or otherwise facilitate) the acquisition of new
words.

The psychological construct of ‘‘keywords’’ in the mental
lexicon has wide-ranging and important implications with
much practical value. However, before we can address the
interesting extensions of this concept, we must first deter-
mine if such keywords even exist in the mental lexicon. To
that end we used the algorithm developed by Borgatti
(2006) to identify a small subset of nodes in the phonolog-
ical network examined in Vitevitch (2008) that would lead
to fracturing of the network (or, barring that, increasing the
average distance between nodes) if they were removed.

Although there are certain psycholinguistic tasks that
make it difficult to retrieve certain words, leading to the
temporary ‘‘removal’’ of a word from the lexicon—such as
the tip-of-the-tongue elicitation task (Brown & McNeill,
1966), or the verbal transformation task (Shoaf & Pitt,
2002)—we were uncertain of the consequences that even
the temporary removal of keywords might have on lexical
processing more generally, or in the long-term. Therefore,
we opted for a method that would allow us to examine
the influence of keywords on processing with a minimal
potential for harm. To that end, we selected another set

Fig. 2. Although node 1 is connected to the most nodes in the network (nodes 2–8) it is not a ‘‘key player’’ in the network, because its removal does not
disconnect the network. However, removal of node 8 (a ‘‘key player’’) results in the network fracturing into two smaller components that are disconnected
from each other. Adapted from Borgatti (2006).
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of words that were similar to the keywords in a variety of
relevant lexical characteristics (e.g., word length, fre-
quency of occurrence, number of phonological neighbors),
but were not identified as being in crucial positions of the
lexical network (i.e., they were not keywords). We then
compared how participants responded to both sets of
words in conventional psycholinguistic tasks. We reasoned
that if keywords indeed played an important role in hold-
ing together the lexical network, then they should be re-
sponded to differently in terms of processing speed and/
or accuracy than words that did not occupy such important
positions in the lexical network. In what follows we report
the results of three standard psycholinguistic tasks—per-
ceptual identification, auditory naming, and auditory lexi-
cal decision—that used keywords and comparable non-
keywords as stimuli.

Experiment 1a and 1b: perceptual identification task

The present experiment used a conventional task in
psycholinguistics, the perceptual identification task, to
compare how keywords and words that resembled the
keywords in numerous ways, but were not located in a cru-
cial position in the lexical network (henceforth referred to
as ‘‘foils’’), were recognized. In the perceptual identifica-
tion task, participants were asked to identify a stimulus
word that was presented in a background of white noise.
We then compared the accuracy of the responses to the
keywords and the accuracy of the responses to the foils.
This task was performed by a sample of undergraduate stu-
dents (Experiment 1a) and replicated in a second sample
from that population (Experiment 1b).

Methods

Participants
Twenty-five undergraduates enrolled in lower level

psychology courses at the University of Kansas partici-
pated for partial course credit. All participants reported
normal hearing and spoke English as their first language.
A second sample of twenty-five participants was selected
from the same population to replicate the result observed
in the first sample.

Materials
A total of 50 words were used in the perceptual

identification experiment: 25 keywords and 25 foils. A
male native speaker of American English (the first author)
produced all of the stimuli by speaking at a normal speak-
ing rate and loudness in an IAC sound attenuated booth
into a high-quality microphone, and recorded digitally at
a sampling rate of 44.1 kHz with a Marantz PMD671 Porta-
ble Solid State Recorder. The pronunciation of each word
was verified for correctness. Each stimulus word was
edited using SoundEdit 16 (Macromedia, Inc.) into an indi-
vidual sound file. The amplitude of the individual sound
files was increased to their maximum without distorting
the sound or changing the pitch of the words by using
the Normalization function in SoundEdit 16. The same
program was used to degrade the stimuli by adding white

noise equal in duration to the sound file. The white noise
was 15 dB less in amplitude than the mean amplitude of
the sound files. Thus, the resulting stimuli were presented
at a + 15 dB signal to noise ratio (S/N).

The 25 key words were selected using the fragmentation
measure described in Borgatti (2006; and also described in
Appendix A) and implemented in the Keyplayer 1.44
software (Borgatti, 2008). Ideally, items in the set selected
by the algorithm result in the connected network fracturing
into several smaller components when they are removed. If
it is not possible to create separate components, then items
are selected whose removal increases the average distance
among nodes in the network.

To assess how well the selected set fractures the
network, a measure known as fragmentation is used.
Fragmentation, F, is defined as the ratio between the num-
ber of pairs of nodes that are not connected once the set of
key players have been removed, and the total number of
pairs in the original fully connected network (i.e., prior to
the removal of the set of key players). The minimum
fragmentation value of 0 indicates the network consists
of a single component (i.e., it has not fractured, but average
distances have increased), and the maximum fragmenta-
tion value of 1 indicates the network has been completely
fractured, solely consisting of isolates, or nodes with no
connections (i.e., every node is unreachable). The set of
25 keywords (listed in Appendix B) that were selected
from the 6508 words in the giant component of the net-
work examined by Vitevitch (2008) had a fragmentation
score of .125, breaking it into 29 components (including
6 isolates, 22 components ranging in size from 2 to 63
nodes, and one large component that contained 6060 of
the 6508 words from the initial giant component).

Borgatti (2006) notes that high fragmentation values will
typically occur when the graph is not very cohesive. The
giant component of the phonological network is very
cohesive (as indicated by the relatively high average values
of clustering coefficient, the average shortest path length,
transitivity, ratio of edges to vertices in the giant compo-
nent, and the amount of assortative mixing by degree
reported in Arbesman et al., 2010). Given the high
cohesiveness of the phonological network, the relatively
low fragmentation value obtain in the present analysis is
not surprising.

For further comparison, Borgatti (2006) found in the
giant component of 63 suspected terrorists (the entire
network contained 74 suspected terrorists; Krebs, 2002)
a fragmentation score of .59, with the giant component
fracturing into 7 smaller components when three key
players were removed. In a network of advice-seeking in
a consulting company (Cross, Parker, & Borgatti, 2002),
Borgatti (2006) found that the component with the stron-
gest ties (containing 32 individuals) had a fragmentation
score of .817 when two nodes were removed, and broke
into four components (including one isolate). In the same
network, he observed a fragmentation score of .843 when
three nodes were removed from the network, breaking it
into six components (including three isolates).

Although the fragmentation scores of the two networks
examined by Borgatti (2006) were much higher than the
fragmentation score observed in the present network, the
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networks examined by Borgatti (2006) were much smaller
than the network used in the present study. Furthermore,
the sets obtained by Borgatti (2006) contained significantly
fewer key players than the set obtained in the present
study. We selected 25 keywords in the present study be-
cause our previous experience suggested that 25 items
was the smallest number of words per condition that we
could use in a psycholinguistic experiment, and because
attempts to obtain a set containing more than 25 key play-
ers from our network resulted in significant increases in
computer processing time to obtain the set of keywords,
but less optimal fragmentation scores than those obtained
from the set containing 25 key players. Given the lower
fragmentation scores for a larger set of keywords, we
decided to use the smaller set of 25 words with the higher
fragmentation score.

It is important to note that the fragmentation score de-
scribes the extent to which the set of key players fragments
the network. It is not an average of the individual items in
the set. In other words, individual items in the set do not
have individual fragmentation scores. Furthermore, be-
cause the fragmentation score describes the extent to
which the set of key players fragments the network it can-
not be calculated for items that are not key players (i.e., for
items that are not removed from the network). In other
words, a fragmentation score for the set of foil words does
not exist; such a value is undefined.

The keywords and foils were comparable on a number
of other measures, including word length (measured in
number of phonemes, and in number of syllables), fre-
quency of occurrence, subjective familiarity, phonological
neighborhood density (known as degree in a network of
phonological word-forms), neighborhood frequency, pho-
notactic probability, and spoken duration. We also
matched the keywords and foils on a number of network
measures as well. The value of each measure for each word
is listed in Appendix B, along with the words in each con-
dition. Because of the strict matching of keywords and
foils, paired t-tests were used to compare the lexical char-
acteristics of words in the two groups.

Word length: Word length was measured in number of
phonemes per word and in number of syllables per word.
The keywords had a mean of 4.36 (SD = .76) phonemes
per word and the foils had a mean of 4.52 (SD = .71) pho-
nemes per word; the difference in number of phoneme
per words was not statistically significant (t (24) = .89,
p = .38). The two sets of words were also comparable when
word length was measured in number of syllables per
word. The keywords had a mean of 1.72 (SD = .54) syllables
per word and the foils had a mean of 1.68 (SD = .48) sylla-
bles per word; the difference in number of syllables per
words was not statistically significant (t (24) = .33, p = .75).

Subjective familiarity: Subjective familiarity was mea-
sured on a seven-point scale (Nusbaum, Pisoni, & Davis,
1984). The rating scale ranged from 1, You have never seen
the word before to 4, You recognize the word, but don’t know
the meaning, to 7, You recognize the word and are confident
that you know the meaning of the word. Keywords had a
mean familiarity value of 5.84 (SD = 1.65) and foils had a
mean familiarity value of 5.63 (SD = .015, t (24) = .51,
p = .61). Given that a rating of 6 in the Nusbaum et al.

norms (1984) indicated that You think you know the mean-
ing of the word, but are not certain that the meaning you
know is correct, the mean familiarity value for the words
in the two groups indicates that participants were likely
to recognize most of the items as real words even though
they might not know the meaning of a particular word.

Word frequency: Word frequency refers to how often a
word in the language is used. When data, such as word-fre-
quency counts, exhibit a skewed distribution, a standard
statistical practice is to transform the data to better
approximate a normal distribution (Tabachnick & Fidell,
2012); hence our use of log-base 10 of the raw frequency
values in the present analyses. Average log word frequency
(log-base 10 of the raw values from Kučera & Francis,
1967) was .82 (SD = .85) for the keywords, and .67
(SD = .76) for the foils (t (24) = .69, p = .49).

We also computed word frequency using the word fre-
quency norms of Brysbaert and New (2009). Note that one
word, inurn, was not found in the Brysbaert and New
norms, so we substituted the frequency value (.02) of the
related word inurnment. To make these values comparable
to the Kučera & Francis norms we took the counts per mil-
lion from the Brysbaert and New norms (SUBTLWF) added 1
to those values and then took the log10 of those values. The
mean word frequency was .81 (SD = .83) for the keywords,
and .64 (SD = .69) for the foils (t (24) = .79, p = .43). As these
analyses show, regardless of the norms used to assess word
frequency, the foils and keywords are relatively well
matched with regards to frequency of occurrence.

Neighborhood density: Neighborhood density was de-
fined as the number of words that were similar to a target
word. Similarity was assessed with a simple and com-
monly employed metric (Greenberg & Jenkins, 1967; Lan-
dauer & Streeter, 1973; Luce & Pisoni, 1998; see also
Otake & Cutler, 2013). A word was considered a neighbor
of a target word if a single phoneme could be substituted,
deleted, or added into any position of the target word to
form that word. For example, the word cat has as phono-
logical neighbors words like _at, scat, mat, cut, cap. Note
that cat has other neighbors, but only a few were listed
for illustration. The mean neighborhood density of the key-
words was 6.88 neighbors (SD = 4.43) and the mean neigh-
borhood density of the foils was 6.56 neighbors (SD = 6.31;
(t (24) = .31, p = .76)).

Neighborhood frequency: Neighborhood frequency is the
mean word frequency of the neighbors of the target word.
Keywords had a mean log neighborhood frequency value of
1.28 (SD = .54), and foils had a mean log neighborhood fre-
quency value of 1.18 (SD = .77, t (24) = .68, p = .50).

Phonotactic probability: The phonotactic probability was
measured by how often a certain segment occurs in a cer-
tain position in a word (positional segment frequency) and
by the segment-to-segment co-occurrence probability
(biphone frequency; Vitevitch & Luce, 1998; 2005). The
mean positional segment frequency (summed across posi-
tions) for keywords was .226 (SD = .098) and for foils was
.236 (SD = .091, t (24) = .52, p = .61). The mean biphone
frequency (summed across positions) for keywords was
.022 (SD = .01) and .021 (SD = .02, t (24) = .58, p = .56).
These values were obtained from the web-based calculator
described in Vitevitch and Luce (2004).
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Duration: The duration of the stimulus sound files was
equivalent between the two groups of words. The mean
overall duration of the keywords was 625.08 ms
(SD = 87.47) and 624.32 ms (SD = 75.55) for the foils (t
(24) = .03, p = .98).

Clustering Coefficient: Clustering coefficient, C, is a mi-
cro-level network metric that measures the extent to
which the neighbors of a given node are also neighbors
of each other. C was computed for each word (i.e., the local
clustering coefficient for an undirected graph) as in previ-
ous studies (e.g., Chan & Vitevitch, 2009, 2010; Vitevitch
et al., 2012) using Eq. (1):

Ci ¼
2jfejkgj

kiðki � 1Þ ð1Þ

ejk refers to the presence of a connection (or edge) between
two neighbors (j and k) of node i, |. . .| is used to indicate
cardinality, or the number of elements in the set (not abso-
lute value), and ki refers to the degree (i.e., neighborhood
density) of node i. By convention, a node with degree of
0 or 1 (which results in division by 0—an undefined value)
is assigned a clustering coefficient value of 0. Note that de-
gree > 1 for all of the words used in the present studies.
Thus, the (local) clustering coefficient is the proportion of
connections that exist among the neighbors of a given
node divided by the number of connections that could ex-
ist among the neighbors of a given node. The mean value of
C for the keywords was .23 (SD = .11) and the mean value
of C for the foils was .21 (SD = .24; (t (24) = .49, p = .62).

Closeness Centrality: Given the influence of closeness
centrality that Iyengar et al. (2012) found in the word-
morph game we also controlled the closeness centrality
of the foils and keywords. Closeness assesses how far away
other nodes in the network are from a given node. See foot-
note 1 for a more precise definition of closeness centrality.
A node with high closeness centrality is very close to many
other nodes in the network, requiring that, on average,
only a few links be traversed to reach another node. A node
with low closeness centrality is, on average, far away from
other nodes in the network, requiring the traversal of many
links to reach another node. The mean value of closeness
centrality for the keywords was .17 (SD = .02) and the
mean value of closeness centrality for the foils was .16
(SD = .03; (t (24) = .72, p = .48), indicating that the key-
words and the foils were, on average, about the same dis-
tance from all other nodes in the network. We report the
inverse of the closeness centrality measures computed by
Gephi (Bastian, Heymann, & Jacomy, 2009), which is the
more common way of reporting closeness centrality mea-
sures (and corresponds to the formula we provided in
Footnote 1).

Community structure: The foils and keywords used in
the present study came from the giant component of the
phonological network examined in Vitevitch (2008).
Recently, Siew (2013) examined the community structure
of words in the giant component of that network. Commu-
nity structure refers to the presence of densely connected
groups within a larger network; items within a community
tend to be more similar to (and more connected to)
items in the same community than to items in other

communities. In the present case, we examined which
communities in the giant component the keywords and
foils resided in. We found that 80% of the foil words resided
in the same community as a keyword. The large amount of
overlap in the communities that the foils and keywords re-
side in further indicates how similar the foils and key-
words are to each other.

Procedure
Participants were tested individually. Each participant

was seated in front of an iMac computer running PsyScope
1.2.2 (Cohen, MacWhinney, Flatt, & Provost, 1993), which
controlled the presentation of stimuli and the collection
of responses.

In each trial, the word ‘‘READY’’ appeared on the com-
puter screen for 500 ms. Participants then heard one of
the randomly selected stimulus words imbedded in white
noise through a set of Beyerdynamic DT 100 headphones
at a comfortable listening level. Each stimulus was pre-
sented only once. The participants were instructed to use
the computer keyboard to enter their response (or their
best guess) for each word they heard over the headphones.
They were instructed to type ‘‘?’’ if they were absolutely
unable to identify the word. The participants could use as
much time as they needed to respond. Participants were
able to see their responses on the computer screen when
they were typing and could make corrections to their re-
sponses before they hit the RETURN key, which initiated
the next trial. The experiment lasted about 15 min. Prior
to the experiment, each participant received five practice
trials to become familiar with the task. These practice trials
were not included in the data analyses.

Results and discussion

Given the way in which the foils and keywords were
matched on a number of relevant variables, and the cate-
gorical rather than continuous nature of ‘‘keyword-ness’’
(i.e., a word either is or is not a keyword) the minimally
sufficient analysis is, of course, a factorial ANOVA. How-
ever, the field of psycholinguistics still holds many beliefs
(some of them erroneous, as described in Raaijmakers,
Schrijnemakers, & Gremmen, 1999) about the influence
that variability in the stimuli (or ‘‘items’’) have on observed
effects. To address those beliefs we used multi-level mod-
eling (Baayen, 2010), a technique that simultaneously as-
sesses the influence of both ‘‘participant’’ and ‘‘item’’
variability, to analyze the present data. Specifically, a 2-le-
vel model was created for each analysis with participant as
the level 2 unit and observations as the level 1 unit.

Accuracy rates (treated as a binomial variable) were the
dependent variable of interest in a logistic linear mixed
effects model using the statistical software R (R Core Team,
2013) with the package ‘‘lme4’’ (Bates, Maechler, & Bolker,
2012) with subject and item as crossed random effect
factors, and a random slope and a random intercept.
Condition (foil/keyword) was dummy coded (0/1). Thus, a
positive coefficient estimate indicates responses to
keywords were more likely to be correct compared to
responses to foils.
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A response was scored as correct if the phonological
transcription of the response matched the phonological
transcription of the stimulus. Misspelled words and typo-
graphical errors in the responses were scored as correct re-
sponses in certain conditions: (1) adjacent letters in the
word were transposed, (2) the omission of a letter in a
word was scored as a correct response only if the response
did not form another English word, or (3) the addition of a
single letter in the word was scored as a correct response if
the letter was within one key of the target letter on the
keyboard. Responses that did not meet the above criteria
were scored as incorrect.

The results (see Table 1) show a statistically significant
difference in the accuracy rate of the keywords and foils,
such that keywords were responded to more accurately
(mean = 54.72%; SD = 1.99) than were the foils
(mean = 48.0%; SD = 2.63). We replicated the experiment
with another sample of twenty-five participants drawn
from the same population, and observed in this second
sample a statistically significant difference in the accuracy
rate of the keywords and foils. In the second sample of par-
ticipants keywords were also responded to more accu-
rately (mean = 53.28%; SD = 2.69) than were the foils
(mean = 47.36%; SD = 2.54).

The results from two samples of participants in Experi-
ment 1 showed that the set of keywords were identified in
noise more accurately than a set of foil words comparable
to the keywords on several lexical characteristics known to
affect lexical processing (e.g., word length, frequency of
occurrence, neighborhood density, phonotactic probability,
etc.) and several network science measures that have re-
cently been shown to influence lexical processing (e.g.,
clustering coefficient and closeness centrality). This result
is striking because widely accepted models of spoken word
recognition (Gaskell & Marslen-Wilson, 1997; Luce &
Pisoni, 1998; Marslen-Wilson, 1987; McClelland & Elman,
1986; Norris, 1994), which account for the influence of
many of these lexical characteristics, would predict no dif-
ference in how these two sets of words are responded to.

Recall that keywords occupy unique positions in the
lexical network, such that they keep a network from frac-
turing into smaller components and help to minimize the
shortest average distance among nodes in the network. De-
spite being very similar to another set of words (i.e., the
foils) drawn from the lexicon, the keywords were identi-
fied more accurately than the other set of comparable
words. The present result demonstrates the importance
of understanding how the structural organization of pho-
nological word-forms in the lexicon can influence language
processing.

The present result also illustrates how a network con-
cept from one domain can be used to explore another,
seemingly disparate domain. Just as key players in a social
network occupy important positions in the system that al-
low them to influence how information (or diseases)
spread across a population of people, keywords in the lex-
ical network occupy unique positions in the mental lexi-
con. The position of such words in the lexical network
affords them privileged access during spoken word recog-
nition. To further examine the privileged access of key-
words compared to words that are—on the surface—quite
comparable, we used two more conventional psycholin-
guistic tasks to assess how processing times might be af-
fected by network location. These tasks, the auditory
naming task and the auditory lexical decision task, again
allowed us to investigate the concept of keywords in the
mental lexicon without the potential risks that might
accompany other tasks—such as the tip-of-the-tongue elic-
itation task or the verbal transformation illusion—that
temporarily ‘‘remove’’ a word from the lexicon.

Experiment 2: auditory naming task

In the auditory naming task, participants hear a spoken
stimulus and must repeat it as quickly and accurately as
possible. In this case we compared how quickly and accu-
rately participants responded to keywords and foils.

Methods

Participants
Twenty-five undergraduates enrolled in lower level

psychology courses at the University of Kansas partici-
pated for partial course credit. All participants reported
normal hearing and spoke English as their first language.

Materials
The same stimuli used in Experiments 1a and 1b were

used in the present study, with the exception that the
words were now presented without noise.

Procedure
The same equipment used in Experiments 1a and 1b

was used in the present study. In the present experiment
a headphone-mounted microphone (Beyerdynamic DT-
109 headphones) was interfaced to the PsyScope button
box to act as a response switch.

Participants saw the word READY flash on the screen to
signal the start of a trial. A randomly selected stimulus was
then played through the headphones. As soon as the par-
ticipant spoke their response, the next trial began. Reaction
time was measured from stimulus onset to the onset of the
participant’s vocal response. Participant responses were
also recorded and later analyzed for accuracy.

Results and discussion

Multi-level modeling (Baayen, 2010) was again used
with the same software and approach as that used in
Experiment 1. Response time was the dependent variable

Table 1
Coefficient of the accuracy rates in the foils and keywords, along with the
estimate, standard error, z-value and p-value for Experiment 1a and 1b.

Estimate Standard error z-Value p-Value

Experiment 1a
Intercept �0.08076 0.08850 �0.91 0.3615
Foil/Keyword 0.27068 0.11462 2.361 0.0182

Experiment 1b
Intercept �0.10570 0.08011 �1.319 0.1870
Foil/keyword 0.23770 0.11660 2.038 0.0415
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of interest with subject and item as crossed random effect
factors, and a random slope and a random intercept.
Condition (foil/keyword) was dummy coded (0/1). Thus, a
negative coefficient estimate indicates keywords had faster
reaction times than foils. Only correct responses within 2
standard deviations of the mean response time were used
in the analyses (resulting in 5.9% of the responses being ex-
cluded). The analysis showed that keywords (M = 977 ms,
SD = 88) were responded to significantly more quickly than
foils (M = 995 ms, SD = 88), indicting that keywords also
have an advantage in processing speed over the foils in
addition to the accuracy advantage observed in Experi-
ment 1 (see Table 2).

Experiment 3: auditory lexical decision task

Experiments 1 and 2 provided evidence to support the
hypothesis that keywords do exist in the mental lexicon,
and that they influence the speed and accuracy with which
spoken words are recognized. We performed another
experiment to bolster this empirical foundation. The pur-
pose of the present experiment was to further examine
keywords in the mental lexicon by employing another task
that emphasizes the activation of lexical representations in
memory—the auditory lexical decision task. Although the
degraded stimuli in the auditory perceptual identification
task (Experiment 1) is somewhat akin to the input we nor-
mally get in the real world (i.e., a signal produced by an
interlocutor amidst a background of environmental
sounds), it is important to further demonstrate that the ef-
fects observed in the auditory naming task (Experiment 2)
generalize to stimuli that are not degraded in any way. The
use of stimuli that are not degraded would also minimize
the possibility that participants responded to the stimuli
using some sort of sophisticated guessing strategy, which
might occur in tasks using degraded stimuli (Hasher &
Zacks, 1984).

The auditory lexical decision task has proven quite use-
ful in examining the influence of many variables—includ-
ing phonological neighborhood density, phonotactic
probability, and neighborhood frequency—on spoken word
processing (e.g., Luce & Pisoni, 1998; Vitevitch & Luce,
1999). In this task, participants are presented with either
a word or a nonword (without any white noise) over a
set of headphones. Participants are asked to decide as
quickly and as accurately as possible whether the given
stimulus is a real word in English or a nonsense word. In
addition to using stimuli that are not degraded, the lexical
decision task, like the auditory naming task used in Exper-
iment 2, allows reaction time data to be assessed. Reaction
times provide us with a means for investigating the time
course of spoken word recognition. Based on the results

of Experiment 2, we predicted that keywords would be re-
sponded to more quickly than the foils.

Method

Participants
Twenty-three undergraduates enrolled in lower level

psychology courses at the University of Kansas partici-
pated for partial course credit. All participants reported
normal hearing and English as their first language. All par-
ticipants were also right-hand dominant.

Materials
The real words used in the present experiment were the

25 keywords and 25 foils that were used in the previous
experiments. A total of 50 nonword stimuli were selected
from Vitevitch and Luce (1999). All nonword stimuli were
bisyllabic and are listed in Appendix C.

Procedure
The same equipment that was used in the previous

experiments was used in the present experiment. In each
trial, the word ‘‘READY’’ appeared on the computer screen
for 500 ms. Participants then heard one of the randomly
selected words or nonwords through a set of headphones
at a comfortable listening level. Each stimulus was pre-
sented only once. The participants were instructed to re-
spond as quickly and as accurately as possible whether
the item they heard was a real English word or a nonword.
If the item was a word, they were to press the button la-
beled ‘WORD’ with their right (dominant) hand. If the item
was not a word, they were to press the button labeled
‘NONWORD’ with their left hand. Reaction times were
measured from the onset of the stimulus to the onset of
the button press response. After the participant pressed a
response button, the next trial began. The experiment
lasted about 20 min. Prior to the experimental trials, each
participant received ten practice trials to become familiar
with the task. These practice trials were not included in
the data analyses.

Results and discussion

Multi-level modeling (Baayen, 2010) was again used
with the same software and approach as that used in Exper-
iment 1. Response time was the dependent variable of
interest with subject and item as crossed random effect fac-
tors, and a random slope and a random intercept. Condition
(foil/keyword) was dummy coded (0/1). Again, a negative
coefficient estimate indicates faster reaction times for key-
words compared to foils. Only correct responses within 2
standard deviations of the mean response time were used
in the analyses (resulting in 2.6% of the responses being ex-
cluded). The analysis showed that keywords (M = 896 ms,
SD = 77) were responded to significantly more quickly than
foils (M = 928 ms, SD = 94), further indicting that keywords
also have an advantage in processing speed over the foils in
addition to the accuracy advantage observed in Experiment
1. The results of this experiment also demonstrate that key-
words do exist in the lexicon, and influence processes asso-
ciated with spoken word recognition (see Table 3).

Table 2
Coefficient of the difference in response times, along with the estimate,
standard error, t-value and p-value for Experiment 2.

Estimate Standard error t-Value p-Value

Experiment 2
Intercept 996.081 17.465 57.03 0.0000
Foil/keyword �20.88 7.068 �2.95 0.0031
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MegaStudy analysis: data from the English Lexicon
Project

To further examine processing differences between the
keywords and foils we analyzed the visual naming and vi-
sual lexical decision data from the English Lexicon Project
(ELP; Balota et al., 2007). The ELP is a large database of
descriptive data (e.g., word frequency, number of ortho-
graphic and phonological neighbors, etc.) for over 40,000
words. The database also contains behavioral data from
1260 participants across 6 different universities who re-
sponded to those words in a visual naming task and a vi-
sual lexical decision task. Balota et al. (2007; p. 457)
suggested that, ‘‘. . .these data will be important for
researchers interested in targeting particular variables. In
some cases, experiments might be replaced by accessing
the database.’’ Rather than conduct yet another experi-
ment to demonstrate that keywords in the lexicon influ-
ence processing, we analyzed the behavioral data in the
ELP for our keywords and foils.

We recognize that the nonwords that appeared in our
auditory lexical decision task differed from those used in
the ELP, which could lead to differences in how the real
words are responded to (see Vitevitch (2003) and Vitevitch
and Donoso (2011) for ways in which the nonwords that
are used in an auditory lexical decision task can influence
processing of the real word targets, and Andrews (1997)
for a review of such effects in visual lexical decision tasks).
Despite that difference we think it is still valuable to exam-
ine independently collected data for possible influences of
keywords on processing.

Another difference between the ELP and the present
studies is that the stimuli in the ELP were presented visu-
ally rather than auditorily as in the present experiments.
Given the results of Yates (2013), we believe there is good
reason to explore how phonological characteristics might
influence the visual domain. Yates (2013) found that words
that differed in the phonological clustering coefficient (as
measured in the network analyzed in Vitevitch, 2008) were
responded to in the same way as observed in Chan and
Vitevitch (2009)—words with low clustering coefficient
were responded to more quickly than words with high
clustering coefficient—even though Yates presented the
stimuli visually to participants in a lexical decision task in-
stead of auditorily as in Chan and Vitevitch (2009).

The final difference that we wish to highlight is in the
statistical analyses we used to examine the ELP data and
the statistical analyses we used in the experiments in the
present study. To examine the ELP data we used a between
groups items analysis, an analysis that is minimally suffi-
cient and the only analysis that can be performed on the
available data. This difference in the type of analyses used

is relevant because it is well-known that between groups
analyses have less statistical power than some other types
of analyses.

Keeping in mind these differences between the experi-
ments in the present study and the ELP data, we examined
the visual naming data in the ELP and found that keywords
(M = 649 ms, SD = 65) tended to be responded to more
quickly than foils (M = 667 ms, SD = 73; t (43) = .86,
p = .39). (Note that the following words from the present
study were not in the ELP database: auricle, feudal, inurn,
leva, and ling.) Furthermore keywords (M = 95%, SD = 10)
tended to be responded to more accurately than foils
(M = 91%, SD = 13; t (43) = 1.18, p = .24). The differences
in naming time and naming accuracy are, of course, not
statistically significant by conventional standards, but it
is noteworthy that the difference in naming time was in
the same direction (and comparable in magnitude) as the
difference observed in the auditory naming task reported
in the present study.

For the visual lexical decision data in the ELP we found
that keywords (M = 682 ms, SD = 98) tended to be re-
sponded to more quickly than foils (M = 712 ms, SD = 135;
t (42) = .83, p = .41), and that keywords (M = 87%, SD = 20)
tended to be responded to more accurately than foils
(M = 78%, SD = 25; t (42) = 1.26, p = .21). As with the ELP vi-
sual naming data, the difference in the ELP visual lexical
decision data does not reach statistical significance by cur-
rent conventions. However, it is striking that for the same
set of words the differences in response time in both the vi-
sual naming and lexical decision data from the ELP were in
the same direction and comparable in magnitude to the re-
sults observed in the present experiments.

To further examine the influence of keywords on lexical
processing we followed another suggestion of Balota et al.
(2007; p. 457), ‘‘. . .one can resample different sets of items
with particular characteristics from the database.’’ It is, of
course, not possible to find other words that form the opti-
mal set of 25 key players in the lexicon, so in the present
case we sampled another set of foil words that were again
comparable to the keywords on a variety of lexical and net-
work characteristics (the words and characteristics are
listed in Appendix D).

In the visual naming data in the ELP we found that key-
words (M = 649 ms, SD = 65) tended to be responded to
more quickly than the second set of foils (M = 683 ms,
SD = 86; t (42) = 1.48, p = .15). Furthermore, keywords
(M = 95%, SD = 9) tended to be responded to more accu-
rately than the second set of foils (M = 94%, SD = 13; t
(42) = .48, p = .63). For the visual lexical decision data in
the ELP we found that keywords (M = 682 ms, SD = 98)
tended to be responded to more quickly than the second
set of foils (M = 690 ms, SD = 79; t (42) = .32, p = .75), and
that keywords (M = 87%, SD = 20) tended to be responded
to more accurately than the second set of foils (M = 81%,
SD = 24; t (42) = .85, p = .40). Despite the failure of the
ELP analyses of an additional set of foils to reach statistical
significance by current conventions, we were again struck
by the fact that the differences in both the visual naming
and lexical decision data from the ELP were in the same
direction and comparable in magnitude to the results ob-
served in the present experiments.

Table 3
Coefficient of the difference in response times, along with the estimate,
standard error, t-value and p-value for Experiment 3.

Estimate Standard error t-Value p-Value

Experiment 3
Intercept 931.46 17.15 54.30 0.0000
Foil/keyword �25.26 10.38 �2.43 0.0149
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One possible interpretation of the ELP results is that net-
work science measures may reflect more central aspects of
lexical processing for both orthography and phonology.
Alternatively, as Yates (2013) suggests, such results may
indicate that phonology influences visual word recognition.
We prefer a more cautious interpretation of the ELP data;
the trends observed in the present analyses simply provide
additional and converging evidence that keywords in the
mental lexicon influence lexical processing.

General discussion

In three conventional psycholinguistic tasks and four
additional analyses of data from the English Lexicon Pro-
ject (ELP) we found a processing advantage for keywords
relative to foils. Recall that keywords occupy a unique
position in the lexical network, holding together several
smaller components in the network, and minimizing the
overall distance between nodes in the network. We se-
lected as foils words that did not occupy such positions
in the lexical network, but were comparable to the key-
words on a number of relevant lexical characteristics,
including frequency of occurrence, neighborhood density
(i.e., degree), word length, phonotactic probability, and
several relevant network science characteristics. Given
the comparability of the keywords and foils on these lexi-
cal characteristics, widely accepted models of spoken word
recognition (Gaskell & Marslen-Wilson, 1997; Luce &
Pisoni, 1998; Marslen-Wilson, 1987; McClelland & Elman,
1986; Norris, 1994), which account for the influence of
these variables on processing, do not predict any difference
in how quickly or accurately the keywords and foils should
be responded to. However, statistically significant differ-
ences were observed, with keywords being responded to
more quickly and accurately than the foils in several con-
ventional psycholinguistic tasks.

The present finding adds to an increasing amount of evi-
dence that suggests that the structure of the lexical net-
work—as described in Vitevitch (2008) and Arbesman
et al. (2010)— influences the speed and accuracy of various
aspects of lexical processing (e.g., Chan & Vitevitch, 2009,
2010; Iyengar et al., 2012; Vitevitch, Chan, & Goldstein,
2013; Vitevitch et al., 2011). It has been recognized for some
time that the structure of the lexicon influences lexical pro-
cessing. Consider this statement by Luce and Pisoni (1998;
p. 1): ‘‘. . .similarity relations among the sound patterns of
spoken words represent one of the earliest stages at which
the structural organization of the lexicon comes into play.’’
What has been missing until recently, however, is the right
set of tools to measure the structure of the lexicon. Previous
findings by Chan and Vitevitch (2009, 2010), Vitevitch
(2008) and others, as well as the present findings illustrate
how the methods and theoretical framework of network
science can be used to measure other aspects of lexical
structure—not just at the micro-level, but at the meso-
and macro-level—and examine how that structure influ-
ences processing. The present findings also demonstrate
how findings from one domain, such as key players in a so-
cial network, can help us to explore another, seemingly
unrelated, domain, such as key words in a lexical network.

So, why are keywords responded to more quickly and
accurately than comparable foils? We propose that indirect
forces, such as the activation of nearby words—in addition to
the direct activation of the keywords and foils themselves—
strengthens the representations of keywords and foils. Even
though the keywords and foils may not be directly activated,
the activation of nearby neighbors will spread to and par-
tially activate the keywords and foils, further strengthening
those indirectly (or implicitly) activated items (Nelson,
McKinney, Gee, & Janczura, 1998). The location of the
keywords at critical junctures in the network results in the
lexical equivalent of an entrepreneurial ‘‘middle-man’’
receiving more of this indirect activation than the foils.
The accumulation of this indirect activation over time may
lower the activation threshold, or raise the resting activation
level of keywords more than foils, enabling them to be
retrieved more quickly and accurately than foils.

Widely accepted models of spoken word recognition all
agree that several similar sounding competitors are par-
tially activated during spoken word recognition, with the
target word ultimately winning that competition and
being recognized. These models, however, explicitly say
little if anything about the long-term and cumulative effects
of the repeated, partial activation of those losing competi-
tors on the subsequent recognition of those spoken words.
Work from other areas of Psychology, however, suggests
that partial and indirect influences on subsequent pro-
cesses are not implausible.

Consider first simulations described by Grossberg
(1987) that examined how two uncommitted nodes in an
adaptive resonance network (a different type of network
than that examined in the present manuscript) compete
to represent a novel input. Both nodes adjust their connec-
tion weights to represent the novel input, but ultimately
one node better represents the input than the other and
becomes committed to represent that information. The
‘‘losing’’ node, however, in attempting to represent the no-
vel input has configured its weights in such a way that it,
rather than some other uncommitted node, can better rep-
resent the next new input if that new input is similar to the
input from the previously lost competition. In other words,
the partial activation of a node during previous, but unsuc-
cessful, attempts to acquire new information can influence
subsequent attempts to acquire new information. Gross-
berg’s (1987) work in adaptive resonance theory (ART) is
one demonstration of how partial activation of a ‘‘compet-
itor’’ can affect subsequent processing.

Another way in which partial activation of competitors
can affect subsequent processing is observed in the
phenomenon known as phonological false memories
(Sommers and Lewis (1999); see Roediger and McDermott
(1995) for semantic false memories). In phonological false
memories, words such as at, scat, mat, cut, and cap are
presented to participants for study. In subsequent recall
or recognition tasks, participants are likely to indicate that
the word cat appeared in the study list, when in fact it did
not (Sommers & Lewis, 1999; Vitevitch et al., 2012). Such
findings further suggest that the partial and indirect
activation of cat during the presentation of the words in
the study list can influence subsequent recall and recogni-
tion processes.
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Evidence that indirect and partial activation of lexical
representations influences spoken word recognition also
comes from Geer and Luce (2014). They found evidence
in an auditory shadowing task and a lexical decision task
that suggests that partially activated, indirect neighbors
(i.e., words 2 connections away from the target in a lexical
network) inhibit direct neighbors of a target word (i.e.,
words 1 connection away from the target), thereby reduc-
ing the amount of inhibition that the target word receives
from those direct neighbors. Referring to Fig. 1, if speech is
the target word, the word spud would inhibit the word
speed, the word beach would inhibit peach, etc., thereby
reducing the amount of inhibition that speech receives
from speed, peach, etc. Said another way, the words that in-
hibit a target word are themselves inhibited by other
words. As shown by Geer and Luce (2014), the number of
indirect neighbors can influence retrieval of a target word
by moderating the influence that direct neighbors have on
the target word (also see Vitevitch, Goldstein, and Johnson,
in press) for additional evidence that indirect neighbors
influence processing).

The influence of indirectly and partially activated repre-
sentations on lexical retrieval has also been observed in
patients with aphasia participating in a treatment tech-
nique known as Verb Network Strengthening Treatment
(VNeST) developed by Edmonds, Nadeau, & Kiran (2009,
see also Semantic Feature Analysis; Coelho, McHugh, &
Boyle, 2000). VNeST attempts to improve sentence produc-
tion in patients with aphasia by training patients to re-
trieve verbs, which partially activate related verbs as well
as the patients and agents associated with the verbs. This
approach has effectively promoted generalization from
single word naming to connected speech in patients with
moderate aphasia. These findings lend some credence to
the hypothesis that indirect activation may differentially
influence the subsequent accessibility of keywords and
foils due to their location in the lexical network.

We acknowledge that this initial exploration of key-
words in the phonological lexicon is tentative. However,
we dared not ‘‘remove’’ such words from the lexicon—even
temporarily via psycholinguistic tasks such as tip-of-the-
tongue elicitation, or the verbal transformation illusion—
in our initial exploration of this psychological construct,
because of concern over potential long-term or wide-
spread effects on lexical processing. Our findings clearly
show that certain words occupy ‘‘key’’ positions in the lex-
ical network, and that these ‘‘keywords’’ are processed
more quickly and accurately than words that resemble
them in many other ways. The present findings now open
many avenues for future research in other domains of lan-
guage, including language acquisition, understanding lexi-
cal processing in individuals affected by language
disorders, and in the development of clinical or therapeutic
applications.

Furthermore, network science offers a unique and pow-
erful set of tools to measure the structure of complex sys-
tems at multiple scales: micro-, meso- and macro-level.
Important discoveries in the domains of biology, technol-
ogy, and social interaction have been made using the tools
of this approach (for a brief review see Albert & Barabási,

2002; Brandes et al., 2013). As demonstrated in the present
study, adopting this approach in the psychological sciences
can lead to new discoveries (e.g., how the structure of the
mental lexicon influences certain aspects of language pro-
cessing), and to an expansion in the range of questions
investigated by psychological scientists. Several other
areas in psychology have benefitted from adopting the
analytic tools of network science (Goldstone, Roberts, &
Gureckis, 2008; Griffiths, Steyvers, & Firl, 2007; Hills, Mao-
uene, Maouene, Sheya, & Smith, 2009; Iyengar et al., 2012;
Sporns, 2010; Steyvers & Tenenbaum, 2005). We urge
more psychological scientists to consider how the network
science approach might lead to new questions and novel
insights.

Although we are enthusiastic about the potential
insights that network science can provide various area of
psychology, we would be remiss if we did not also note
that networks are not suitable for all problems or
research questions. Researchers who desire to use the
theoretical framework and analytic tools of network
science should think carefully about how well entities
and relationships among those entities in a given domain
map onto nodes and connections in a network representa-
tion (see Valente (2012) for a similar point regarding
network interventions).

Furthermore, even if a problem is amenable to network
analysis, not all network measures may be relevant in a gi-
ven domain (Brandes et al., 2013). For example, there are
many measures of centrality and ‘‘importance’’ in network
analysis, but of those many measures, the negative-Key
Player Problem (Borgatti, 2006) mapped reasonably well
onto a linguistically relevant phenomenon, namely, the
inability to retrieve a word from the lexicon, as one might
experience temporarily in the tip-of-the-tongue phenome-
non (see Borgatti (2005) for a discussion of which central-
ity measures are appropriate in various contexts). Given
the demonstrable influence of ‘‘keyword-ness’’ on process-
ing observed in the present study, this concept warrants
further exploration in several other areas of language pro-
cessing. There are likely other concepts from network sci-
ence, perhaps even phenomena in social networks that
might also ‘‘translate’’ to the cognitive domain, and war-
rant investigation. We hope that psychologists investigat-
ing those other domains will consider what the network
science approach has to offer.

Appendix A

The fragmentation measure (DF) is derived in Borgatti
(2006). The final form of the equation (listed as Eq. (9) in
Borgatti, 2006) is:

DF ¼ 1�
2
P

i>j
1

dij

nðn� 1Þ

in which dij is a measure of reachability that varies be-
tween 0 and 1 for a given pair of nodes (indexed by i and
j), and n is the number of nodes in the network.
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Appendix B

Lexical and network characteristics of keywords used in Experiments 1–3.

Word KFfreq SUBTLfreg FAM Density NHF PPseg PPbi C Close. Cent.

Amend .30 0.24 7.0 8 1.93 0.16 0.01 0.25 0.16
Auricle .00 0.01 5.1 3 1.12 0.20 0.02 0.33 0.15
Bring 2.20 2.52 7.0 8 3.06 0.18 0.02 0.25 0.18
Colic .00 0.18 4.0 6 2.67 0.31 0.04 0.13 0.17
Defy .85 0.61 5.9 4 2.36 0.18 0.02 0.17 0.16
Filing 1.28 0.74 7.0 3 2.17 0.22 0.02 0.33 0.16
Fish 1.54 1.93 7.0 13 2.54 0.15 0.01 0.31 0.20
Inurn .00 0.01 2.6 5 1.30 0.17 0.04 0 0.13
Leva .00 0.04 2.4 5 2.67 0.21 0.01 0.30 0.15
Ling .00 1.21 2.8 21 2.88 0.14 0.01 0.23 0.22
Lion 1.23 1.21 7.0 5 2.79 0.12 0.01 0.30 0.18
Milling 1.26 0.11 5.8 6 2.43 0.29 0.03 0.40 0.14
Misty .60 0.41 6.8 5 2.13 0.36 0.05 0.20 0.17
Opine .00 0.05 2.5 3 3.05 0.09 0.00 0.33 0.19
Over 3.09 3.12 7.0 10 2.57 0.03 0.01 0.18 0.17
Packet .48 0.55 7.0 5 2.24 0.34 0.03 0.10 0.17
Pallet .00 0.15 6.1 5 2.27 0.40 0.03 0.10 0.13
Pocket 1.66 1.56 7.0 7 1.50 0.32 0.03 0.33 0.15
Polite .85 1.17 7.0 3 1.52 0.29 0.01 0.33 0.16
Scrawl .00 0.09 5.7 4 1.72 0.26 0.01 0 0.16
Spring 2.10 1.51 7.0 5 1.92 0.26 0.02 0.10 0.14
Tenet .00 0.05 5.5 6 2.23 0.34 0.04 0.20 0.17
Tense 1.18 1.05 7.0 12 2.75 0.26 0.03 0.32 0.19
Void 1.00 0.71 6.9 4 2.85 0.06 0.00 0.33 0.17
Wrist 1.00 1.05 7.0 16 2.43 0.31 0.06 0.16 0.20

Notes: KFfreq = log10 value of frequency of occurrence (per million) from the Kučera and Francis (1967) norms. SUBTLfreg = log10 value of frequency of
occurrence (per million) from the Brysbaert and New (2009) norms. FAM = Subjective familiarity ratings from Nusbaum et al. (1984). Density = phono-
logical neighborhood density (a.k.a. degree), which is the number of words that sound like the target word (based on the addition, deletion or substitution of
a phoneme; Luce and Pisoni, 1998). NHF = Mean frequency of occurrence of the phonological neighbors (known as neighborhood frequency). PPseg = sum of
the positional segment frequency (obtained from Vitevitch and Luce, 2004). PPbi = sum of the segment-to-segment co-occurrence probability (biphone
frequency; obtained from Vitevitch and Luce, 2004). C = local clustering coefficient (Watts and Strogatz, 1998). Close. Cent. = closeness centrality (see text
and Footnote 1 for more explanation).

Lexical and network characteristics of foils used in Experiments 1–3.

Word KFfreq SUBTLfreg FAM Density NHF PPseg PPbi C Close.Cent.

Album .78 1.05 7.0 1 1.00 0.21 0.01 0 0.13
Aloft .48 0.24 6.4 1 1.30 0.18 0.01 0 0.15
Attest .30 0.16 5.1 2 2.84 0.21 0.02 0 0.16
Brief 1.86 1.19 6.9 8 2.08 0.18 0.02 0.42 0.18
Cockney .00 0.13 3.3 1 1.48 0.29 0.02 0 0.16
Downy .00 0.15 5.9 4 3.35 0.20 0.01 0.50 0.18
Espy .00 0.02 2.7 1 1.95 0.12 0.00 0 0.16
Firm 2.03 0.08 6.8 2 1.54 0.14 0.01 0 0.15
Fuedal .78 1.56 6.8 13 2.13 0.12 0.00 0.32 0.20
Lave .00 0.04 2.8 22 2.85 0.09 0.00 0.33 0.22
Lighten .00 0.84 7.0 6 2.88 0.14 0.01 0.27 0.19
Manna .00 0.16 2.4 6 3.35 0.31 0.03 0.40 0.19
Mystic .48 0.39 6.8 4 1.40 0.41 0.07 0.17 0.13
Osprey .00 0.01 2.6 2 1.70 0.14 0.01 1.00 0.13
Party 2.33 2.37 7.0 5 3.05 0.35 0.03 0.20 0.16
Pasty .30 0.21 6.2 8 2.58 0.37 0.04 0.11 0.17
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(continued)

Word KFfreq SUBTLfreg FAM Density NHF PPseg PPbi C Close.Cent.

Pilot 1.64 1.44 7.0 2 1.40 0.35 0.02 0 0.12
Poster .60 0.84 7.0 7 2.26 0.35 0.04 0.10 0.16
Rent 1.32 1.55 7.0 17 2.84 0.31 0.04 0.36 0.20
Rupee .78 0.02 2.4 2 1.00 0.15 0.01 0 0.13
Squirt .00 0.57 7.0 5 1.87 0.22 0.01 0.10 0.16
Stilt .00 0.02 5.5 7 3.05 0.28 0.02 0.14 0.18
Test 2.08 1.93 7.0 18 2.77 0.29 0.04 0.37 0.19
Torrid .30 0.19 5.4 1 1.00 0.21 0.01 0 0.07
Vest .60 0.82 6.9 19 2.76 0.26 0.03 0.36 0.19

Appendix C

The high-high and high-low phonotactic probability
nonwords (in IPA) from Vitevitch and Luce (1999) used
in Experiment 3.

High–high High–low

fVl�Vn sVvwVS

mVbsVS ¤Vl�VtS
tVlsVF sVdSV�
hVsFVn lVnðVz
dVssVz pVmwVF

sVgkVk bVlðVg
taIsdaIp saIvðaIm
vaI¤vaIk �aInnaIð
baIsfaIk saIpkaIð
¤aI¤maId saImðaIp
haIssaIb gaInSaIp
vaItFaInd paIt�aIb
kis�in bisði�
kik¤ig sivjiF
sighin dikziF
fikkit ninji�
pimfis hinzi�
vin¤iz biltSiS
vet¤eb nes�eh
mebkeb tesSeh
sebmep pepFeg
geswes lel�eg
hessep henSeg
peb¤em pemFeF

d¯sm¯n p¯dS¯�

Appendix D

Lexical and network characteristics of a second set of foils used in the ELP analyses.

Word KFfreq SUBTLfreg FAM Density NHF PPseg PPbi C Close. Cent.

Angle 1.71 1.20 7.00 10 0.88 0.07 0.00 0.47 0.13
Attention 2.25 2.00 7.00 2 1.48 0.28 0.03 0.00 0.11
Breadth 0.85 0.16 5.08 2 1.69 0.21 0.02 1.00 0.16

(continued on next page)
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