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a b s t r a c t

Complex networks describe how entities in systems interact; the structure of such net-
works is argued to influence processing. One measure of network structure, clustering
coefficient, C, measures the extent to which neighbors of a node are also neighbors of each
other. Previous psycholinguistic experiments found that the C of phonological word-forms
influenced retrieval from the mental lexicon (that portion of long-term memory dedicated
to language) during the on-line recognition and production of spoken words. In the present
study we examined how network structure influences other retrieval processes in
long- and short-term memory. In a false-memory task—examining long-term memory—
participants falsely recognized more words with low- than high-C. In a recognition mem-
ory task—examining veridical memories in long-term memory—participants correctly
recognized more words with low- than high-C. However, participants in a serial recall
task—examining redintegration in short-term memory—recalled lists comprised of high-
C words more accurately than lists comprised of low-C words. These results demonstrate
that network structure influences cognitive processes associated with several forms of
memory including lexical, long-term, and short-term.

� 2012 Elsevier Inc. All rights reserved.

Introduction

Mathematics, physics, computer science, and other
fields use complex networks to model large-scale systems
(for a review see Albert & Barabási, 2002). Entities in these
systems, such as people, animals, or web-pages, are repre-
sented as nodes in the network, and relationships, such as
friendships, predator–prey interactions, or hyperlinks con-
necting web-pages, are represented as connections (a.k.a.
edges or links) between nodes in the network. The emerging
pattern of connections among the nodes may resemble a
lattice (i.e., a regular network), appear to be random (i.e., a
random network), or, more interesting, contain certain fea-

tures of both regular and random networks. Network struc-
tures that contain certain features of both regular and
random networks are often found in real-world systems,
and are referred to as complex networks.

Although complex networks have primarily been used to
model social, biological, and technological systems, they
can also be used to examine complex cognitive systems.
The assumptions associated with complex networks should
not be confused with the assumptions associated with other
types of ‘‘networks’’ that have been used in the cognitive
sciences, such as artificial neural networks (Rosenblatt,
1958) semantic networks (Quillian, 1967), or linguistic nec-
tions (Lamb, 1970). An example of the complex network ap-
proach applied to cognitive science is found in Vitevitch
(2008), in which nodes represented approximately 20,000
English words, and connections represented phonological
similarity between words (using the metric in Luce and
Pisoni (1998); for semantic relationships see: Hills,
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Maouene, Maouene, Sheya, & Smith, 2009). A sample of
words from the network examined by Vitevitch (2008) is
shown in Fig. 1.

Analysis of the network of phonological word-forms in
English revealed several interesting structural features:
(1) a large highly interconnected component, as well as
many islands (words that were related to each other—such
as faction, fiction, and fission—but not to other words in the
large component) and many ‘‘lexical hermits,’’ or words
with no neighbors (known as isolated or disconnected
nodes in the network science literature); the largest com-
ponent exhibited (2) the characteristics of a small-world
network,1 (3) assortative mixing by degree (a word with
many neighbors tends to have neighbors that also have
many neighbors; Newman, 2002), and (4) a degree distribu-
tion that deviated from a power-law.

Arbesman, Strogatz, and Vitevitch (2010) found the
same constellation of structural features in phonological
networks of Spanish, Mandarin, Hawaiian, and Basque,
and elaborated on the significance of these characteristics.
For example, the giant component of the phonological net-
works contained, in some cases, less than 50% of the nodes;
networks observed in other domains often have giant

components that contain 80–90% of the nodes. Simulations
by Arbesman et al. demonstrated that this characteristic
contributes to the robustness of phonological networks
when highly connected nodes are targeted for removal or
when nodes are removed at random.

Arbesman et al. (2010) also noted that assortative mix-
ing by degree is found in networks in other domains. How-
ever, typical values for assortativity in social networks
range from .1 to .3, whereas the phonological networks
examined by Arbesman et al. were as high as .7. Finally,
most of the languages examined by Arbesman et al. exhib-
ited degree distributions fit by truncated power-laws (but
the degree distribution for Mandarin was better fit by an
exponential function). Networks with degree distributions
that follow a power-law are called scale-free networks, and
have attracted attention because of certain structural and
dynamic properties (Albert & Barabási, 2002). See work
by Amaral, Scala, Barthélémy, and Stanley (2000) for the
implications on the dynamic properties of networks with
degree distributions that deviate from a power-law in cer-
tain ways.

A common assertion in the complex network literature
is that the structure of such networks influences process-
ing (Watts & Strogatz, 1998). Chan and Vitevitch (2009,
2010) used several conventional psycholinguistic tasks to
examine how one structural characteristic of the phono-
logical network of English influenced the process of lexical
retrieval during the on-line production and recognition of
spoken words. Of the measurements used to describe the
structure of a complex network, two are presently most
relevant: degree and clustering coefficient. Degree is the

Fig. 1. A sample of words from the phonological network analyzed in Vitevitch (2008). The word ‘‘speech’’ and its phonological neighbors (i.e., words that
differ by the addition, deletion or substitution of a phoneme) are shown (i.e., 1-hop neighbors of ‘‘speech’’). The phonological neighbors of those neighbors
are also shown (i.e., 2-hop neighbors of ‘‘speech’’).

1 As defined by Watts and Strogatz (1998), a network is said to be a
small-world network if (i) the average distance between two randomly
chosen nodes in that network is approximately the same distance between
two randomly chosen nodes in a network of comparable size with
connections randomly placed between nodes (L � Lrandom), and (ii), the
clustering coefficient of that network is much larger than the clustering
coefficient of a network of comparable size with connections randomly
placed between nodes (C� Crandom).
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number of connections incident with a node. In the net-
work of Vitevitch (2008), degree corresponds to the num-
ber of words that sound similar to a given word.2 Much
research in Psycholinguistics shows that degree influences
several language-related processes, including the production
(e.g., Vitevitch & Stamer, 2006, 2009) and recognition (e.g.,
Vitevitch, 2002a) of spoken words, word-learning
(e.g., Storkel, Armbruster, & Hogan, 2006), and serial recall
(e.g., Roodenrys, Hulme, Lethbridge, Hinton, & Nimmo,
2002). In Fig. 2, degree corresponds to the number of con-
nections between the words badge and log to their respec-
tive neighbors (both words have 13 neighbors).

Clustering coefficient, C, (Watts & Strogatz, 1998) mea-
sures the extent to which neighbors of a given node are
also neighbors of each other, and was examined by Chan
and Vitevitch (2009, 2010). C is represented in Fig. 2 by
the connections between a neighbor of badge to another
neighbor of badge (e.g., the connection between bass and
bat), or that connect a neighbor of log to another neighbor
of log (e.g., the connection between league and leg). C
ranges from 0 (none of the immediate neighbors of a node
are connected to each other) to 1 (all of the immediate
neighbors of a node are fully interconnected). In the pres-
ent study, C was computed for each word (i.e., the local
clustering coefficient for an undirected graph) as in the fol-
lowing equation:

Ci ¼
2jfejkgj

kiðki � 1Þ ð1Þ

ejk refers to the presence of a connection (or edge) between
two neighbors (j and k) of node i, |...| is used to indicate car-
dinality, or the number of elements in the set (not absolute

value), and ki refers to the degree (i.e., neighborhood den-
sity) of node i. By convention, a node with degree of 0 or 1
(which results in division by 0—an undefined value) is as-
signed a clustering coefficient value of 0. Note that degree
>1 for all of the words used in the present studies. Thus, the
(local) clustering coefficient is the proportion of connec-
tions that exist among the neighbors of a given node di-
vided by the number of connections that could exist
among the neighbors of a given node.

As reported in Chan and Vitevitch (2010), the correla-
tion between degree, k, and C for the 6281 words with 2
or more neighbors (the minimum number of neighbors
required to compute C) from the network examined in
Vitevitch (2008) is r = .005, p = .68 (a scattergram of those
data appears in Appendix A). That is, a word with many
neighbors, k, could have high or low C. Similarly, a word
with few neighbors, k, could have high or low C. In the
present experiments (as in Chan & Vitevitch, 2009, 2010)
we used words that varied in C, but were comparable in
k (with k > 1).

Using several conventional psycholinguistic tasks, Chan
and Vitevitch (2009, 2010) examined how the structural
characteristic, C, influenced the process of lexical retrieval
during the on-line recognition and production of spoken
words. Chan and Vitevitch (2009) found in two word
recognition tasks—perceptual identification and lexical
decision—that words with high C (badge in Fig. 2) were re-
sponded to more slowly and less accurately than words
with low C (log in Fig. 2), even though the words were equiv-
alent in degree and a number of other relevant characteris-
tics. Similarly, Chan and Vitevitch (2010) found in an
analysis of a corpus of speech production errors and a pic-
ture-naming task that words with high C were responded
to more slowly and less accurately than words with low C.
Thus, network structure, as measured by C, influences the
speed and accuracy with which spoken words are retrieved
from the mental lexicon—traditionally defined as that por-
tion of long-term memory dedicated to language.

In the present experiments we examined whether the
influence of phonological network structure on cognitive

Fig. 2. The word badge has high C and the word log has low C. Both words have the same number of neighbors (a.k.a. degree). Connections are placed
between words that are phonologically similar. For visual clarity, connections from the neighbors to other words in the network are not shown.

2 In the psycholinguistic literature, this measure is commonly referred to
as phonological neighborhood density (Luce & Pisoni, 1998). However, in the
present report, we will use the term degree rather than neighborhood
density. This does not mean we are reinventing, or redefining the term
‘‘neighborhood density’’ in any way, we simply wish to use the term degree
to maintain consistency with the network science literature that motivated
the present study.
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processing was limited to the on-line production and rec-
ognition of spoken words examined by Chan and Vitevitch
(2009, 2010), or if network structure might also influence
other phenomena associated with long-term and
short-term memory. To examine how network structure
influences retrieval from long-term memory we used, in
Experiment 1, the false memory paradigm (Deese, 1959;
Roediger & McDermott, 1995). To examine how network
structure influences retrieval of veridical memories (rather
than generating ‘‘false’’ memories) we used an old-new
recognition task in Experiment 2. In Experiment 3, we used
a serial recall task to examine how network structure influ-
ences the process of redintegration (Schweickert, 1993), in
which information in long-term memory is used to recon-
struct degraded representations in short-term memory.

We recognize that these tasks are often used to examine
very different types of memory and very different theories
about cognitive processing, but it is not our intention in
the present study to test specific theories of long-term
or short-term memory. Rather, we wished to use well-
understood memory tasks and phenomena to further
examine how the network structure exhibited among
words in the phonological lexicon influences cognitive
processing.

Experiment 1

The work of Roediger and McDermott (1995) renewed
interest in the study of false memories (Deese, 1959),
where participants report in a recall or recognition task
events that never happened. In this paradigm, participants
typically hear a list of words containing close semantic
associates of a critical item, and are tested for their recall
or recognition of list items that were studied, and of the
non-studied critical items. For example, participants might
hear the words thread, pin, sewing, sharp, etc., which are
semantic associates of the word needle (which, crucially,
is not presented for study). Immediately after study,
participants are asked to recall as many of the words from
the list as possible. Participants correctly recalled items
from the list 65% of the time, and falsely recalled the
non-studied critical item (needle, in the example above)
40% of the time, despite specific instructions to the partic-
ipants to recall only items that had been presented.

The results of Roediger and McDermott (1995) have
been replicated and extended in a number of interesting
ways. One study germane to the present investigation is
by Sommers and Lewis (1999), in which false memories
were elicited for phonologically rather than semantically
related words. That is, participants studied words like fat,
cab, cot, sat, cut, kit, mat, and cad that were phonological
neighbors of the (non-studied) critical item cat. As when
semantically related words are studied, Sommers and
Lewis found false memories (in recall and recognition)
for the non-studied phonologically similar critical item
(i.e., cat).

To examine how the structure of the phonological
network in the mental lexicon influenced one aspect of
long-term memory we used the phonological false mem-
ory paradigm developed by Sommers and Lewis (1999).

As in Sommers and Lewis (1999) we presented phonologi-
cal neighbors of a (non-studied) critical item. That is—
referring to the items in Fig. 2—we presented words like
bad, bag and back (but not badge), and long, leg and lawn
(but not log), and measured how often participants falsely
‘‘recalled’’ hearing the non-presented critical items (badge
and log). A crucial difference between the current study
and the study by Sommers and Lewis (1999) is that the
non-studied critical items in the current experiment varied
in C. That is, some of the non-studied critical items had
many neighbors that were also neighbors of each other
(consider the neighbors of badge in Fig. 2), whereas other
non-studied critical items had the same number of neigh-
bors, but few of those neighbors were neighbors of each
other (consider the neighbors of log in Fig. 2).

The current experiment provides not only the opportu-
nity to demonstrate that the structure of representations
in the mental lexicon influence more general memory pro-
cesses, but it also represents an interesting test of the ac-
count inspired by the network science approach described
in Chan and Vitevitch (2009) and simulated in Vitevitch, Er-
cal, and Adagarla (2011). Current models of spoken word
recognition view the mental lexicon as a collection of
arbitrarily ordered phonological representations, and the
process of lexical retrieval as a special instance of pattern
matching. Lexical retrieval occurs in these models because
a given word-form best matches the acoustic–phonetic in-
put (or other sources of evidence). Chan and Vitevitch
(2009) instead suggested that the mental lexicon could be
viewed as a (small-world) network, and lexical retrieval
could be viewed as a search through that network, much
like the PageRank algorithm (Page, Brin, Motwani, & Wino-
grad, 1998) searches through the structured network of
information that is the World-Wide Web. Interestingly,
Griffiths, Steyvers, and Firl (2007) demonstrated that the
PageRank algorithm could be used in a semantic network
constructed from word association data to predict perfor-
mance of participants who were shown a letter of the alpha-
bet and asked to name the first word beginning with that
letter that came to mind.

Chan and Vitevitch (2009) started with the network
structure for the phonological lexicon observed by
Vitevitch (2008). Overlaying that structure was the addi-
tional assumption that ‘‘activation’’ would ‘‘spread’’ from
an initially activated node to the nodes that it was con-
nected to, and then to the nodes that they in turn were
connected to (which included the node from which activa-
tion was initially received). Although other models of
cognitive processing often include additional parameters
such as inhibition, decay of activation, threshold levels,
etc., no such assumptions were made in the description of-
fered by Chan and Vitevitch (2009).

In the case of a word with low C in the mental lexicon
(log in Fig. 2), Chan and Vitevitch (2009) suggested that
the small number of interconnections among the neigh-
bors would result in some of the activation from the
neighbors spreading back to the target word, some of the
activation from the neighbors spreading to other neighbors
of the target word, and some of the activation from the
neighbors spreading to the rest of the network (i.e., words
related to the neighbors of log, but not shown in Fig. 2). In
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the case of a word with high C in the mental lexicon (badge
in Fig. 2), some of the activation from the neighbors would
spread back to the target word, and some of the activation
from the neighbors would spread to the rest of the net-
work, just as in the case of words with low C. However, gi-
ven that the neighbors of a word with high C are highly
interconnected with each other, most of the activation will
remain amongst the interconnected neighbors rather than
spread back to the target word or to the rest of the net-
work, in contrast to words with low C. The larger amount
of activation spreading from the neighbors back to target
words with low C, compared to words with high C where
most of the activation is circulating amongst the neighbors,
will result in higher activation levels for words with low C
compared to words with high C, and therefore rapid and
accurate retrieval from the lexicon of words with low C.

Viewing the simple spreading activation model de-
scribed in Chan and Vitevitch (2009) as a special instance
of diffusion dynamics in network science (that is, how a
disease or a fad spreads across a system), Vitevitch, Ercal,
and Adagarla (2011) replicated in a network simulation
not only the influence of C on spoken word recognition ob-
served in Chan and Vitevitch (2009), but also the influence
of phonological neighborhood density (i.e., degree) often
seen in studies of spoken word recognition (e.g., Luce &
Pisoni, 1998). For examples of studies exploring diffusion
dynamics in other cognitive domains see Borge-Holthoefer
and Arenas (2010) and Borge-Holthoefer, Moreno, and
Arenas (2011).

Note that the account above explains how processing of
a target word (like badge or log) is influenced by the struc-
ture found among the neighbors that are stored in the
mental lexicon. In the psycholinguistic tasks used in Chan
and Vitevitch (2009, 2010), only the target words, not the
neighbors were presented to participants. In the current
false memory experiment, however, the neighbors, not
the target words are presented to participants, providing
an interesting test of this (verbal) model. Based on the
spreading-activation account described in Chan and
Vitevitch (2009, 2010; see also Vitevitch, Ercal, & Adagarla,
2011), we hypothesized that the different amount of acti-
vation spreading from the neighbors back to the target
word for words with low versus high C will impact the
rates of false memories of the (non-studied) critical item
(i.e., the target word). Note that the words with low and
high C used in Chan and Vitevitch (2009, 2010)—as well
as in the present studies (as described in the Methods
section)—are comparable on a number of other relevant
psycholinguistic measures, so the initial activation of the
target words will be the same. Only C, and therefore the
amount of activation that feeds back to the target words
from the neighbors, will differ.

For words with low C (like log in Fig. 2), the neighbors of
log will spread activation to the rest of the network—
including to the non-studied critical item, log—resulting
in the ‘‘erroneous’’ activation of the critical item, and
higher rates of false memories for critical items with low
C. However, in the case of words with high C (like badge
in Fig. 2), most of the activation will remain amongst the
highly interconnected neighbors of badge resulting in less
activation being sent to the rest of the network and,

crucially, to the non-studied critical item, producing lower
rates of false memories for critical items with high C.

Methods

Participants
Twenty-one native English speakers from the Introduc-

tory Psychology students enrolled at the University of Kan-
sas received partial credit towards the completion of the
course for their participation. None of the participants re-
ported a history of speech or hearing disorders, or partici-
pated in the other experiments reported here.

Materials
Thirty words were used as critical items (CI) in the pres-

ent experiment (see Appendix B). Fifteen critical items had
high C (mean = .576, sd = .12) and 15 had low C (mean =
.218, sd = .02; F(1,28) = 128.42, p < .0001). C was computed
as in Eq. (1) using Pajek, a computer program used for
network analysis (Batagelj & Mrvar, 1988). Although the
two sets of words differed in C, they were equivalent (all
p’s > .10) in familiarity (measured on a seven-point
scale), word frequency (Kučera & Francis, 1967), degree/
neighborhood density (Luce & Pisoni, 1998), neighborhood
frequency (the mean word frequency of the neighbors of
the target word), neighborhood spread (the number of pho-
neme positions in a word that form a neighbor Vitevitch,
2007), segment and biphone frequency (Vitevitch & Luce,
2004), concreteness ratings, and network density of the
2-hop neighborhood (see Table 1). Network density
measures the number of connections that exist in an entire
network in relation to the maximal number of connections
that could exist in that network. A network density value
near 0 indicates that there are actually few connections
in the network compared to the number of connections
that could exist in the network. A network density value
near 1 indicates that the number of connections in the net-
work is approaching the maximal number of connections
that could exist in the network. (The term ‘‘network den-
sity’’ is from the field of network science, and should not
be confused with the term ‘‘phonological neighborhood
density’’ from the field of psycholinguistics.) The region
of the network that was measured in the following exper-
iments contained the critical item, the neighbors of the
critical item (known as 1-hop neighbors), and the neigh-
bors of the neighbors (known as 2-hop neighbors).

For each of the critical items, participants studied 10
phonological neighbors. Note that each critical item has
more than 10 neighbors, but only 10 were used due to time
constraints in the experimental session. Phonological
similarity was assessed with a commonly employed met-
ric: a word was considered a neighbor of the critical item
if a single phoneme could be substituted, deleted, or added
into any position of the critical item to form that word
(Greenberg & Jenkins, 1967; Landauer & Streeter, 1973;
Luce & Pisoni, 1998). For example, the word cat has as pho-
nological neighbors_at, scat, mat, cut, cap. Note that cat has
other neighbors, but only a few are listed for illustration.
The order of the 10 neighbors of each CI in the word lists
was randomized, and the same order was used for all
participants.
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For the purpose of counterbalancing, the 30 stimulus
lists were divided into three sets of 10 lists. Each set con-
tained five lists from the high C condition and five lists
from the low C condition. Each participant was presented
with two sets of the 10 lists (i.e., 20 of the 30 lists) for
study. The remaining set of 10 lists was not presented to
the participants, but was used as foils in the recognition
task following the final study list. The specific lists
presented for study were counterbalanced across partici-
pants such that the 30 lists were presented equally often
for study. The order of list presentation was pseudo-
randomized such that no more than three lists of the same
condition could be presented consecutively, and the same
order was used for all participants.

The 120-items in the recognition test consisted of an
equal number of studied (also referred as ‘‘old’’) and non-
studied (also referred as ‘‘new’’) items. The old items in-
cluded the 60 studied items, three taken from each of the
20 studied lists from the 2nd, 4th and 8th positions. The
new items included the 30 CIs (20 from the studied lists
and 10 from the non-studied lists) and the 30 non-studied
items, three taken from each of the 10 non-studied lists
(positions 2, 4, 8). All of the stimulus words were produced
by the first author at a normal rate and loudness in an IAC
sound-attenuated booth into a high-quality microphone,
and recorded digitally at a sampling rate of 44.1 kHz with
a Marantz PMD671 Portable Solid State Recorder. Each
stimulus word was edited into an individual sound file
using SoundEdit 16 (Macromedia, Inc.).

Procedure
The procedure we used in the present experiment

followed that used in Experiment 1 of Sommers and Lewis
(1999). Participants were tested individually. Each partici-
pant was seated in front of an iMac computer running
PsyScope 1.2.2 (Cohen, MacWhinney, Flatt, & Provost,
1993), which controlled the presentation of stimuli and
the collection of responses. Participants were instructed
that they would hear a list of words, complete as many
math problems as they could in 1.5 min, and after all of
the lists had been presented, complete a 120-item
recognition task where they would indicate by pressing
the appropriately labeled button on a response box if the

word they heard was one of the items from the previously
presented lists.

Presentation of a list began with the word READY
appearing on the screen for 500 ms. After the 10 items in
the list were presented (each item separated by 1.5 s inter-
stimulus interval), the prompt MATH appeared on the
screen to indicate that the participant should complete as
many math problems (e.g., addition of two-digit numbers)
on a pre-printed test sheet as possible in 1.5 min. After
1.5 min had elapsed, a 500 ms warning tone was presented
and the word READY appeared on the screen to indicate
the next list of words was about to be presented.

After all 20 lists had been presented, participants com-
pleted the recognition task. Participants heard individual
words presented over headphones, and indicated whether
each word was old (i.e., a word from the studied lists) or
new (i.e., it was not from the studied lists). Participants
were instructed to call an item old only if they were sure
it had appeared on one of the lists. It is common for both
recall and recognition tasks to be used in the false memory
paradigm. However, we chose to use only a recognition
task for several reasons: (1) the pattern of results in recall
and recognition are similar, (2) as in Sommers and Lewis
(1999), we were concerned that false recall in the recall
task might inflate false recognition rates in the recognition
task, and (3) (serial) recall memory was tested in Experi-
ment 3.

Results and discussion

In addition to following the methodology used in
Sommers and Lewis (1999), we also conducted analyses
that were similar to those reported in Sommers and Lewis
(1999). Therefore, to test how network structure—as mea-
sured by clustering coefficient—influences long-term mem-
ory, we compared the rate of false memories that occurred
for non-studied CIs with high and low clustering coefficient.
Although other types of analyses of false memories are pos-
sible (e.g., comparisons of d0), they do not affect our inter-
pretation of the most relevant comparison in the present
experiment: the rate of false memories for words with
low C compared to the rate of false memories for words
with high C. More false memories occurred for words with
low C (mean = .64, sd = .18) than for words with high C
(mean = .51, sd = .18; F(1,20) 8.437, p = .009, g2 = .297).
The greater false memory rate for words with low C is
consistent with our hypothesis that the activation of the
neighbors spreads primarily to the network, including to
the non-studied CI, producing a high false memory rate
for CIs with low C. In the case of words with high C, presen-
tation of the neighbors leads to activation that spreads
mostly amongst the highly interconnected neighbors, with
relatively less activation going to the rest of the network
and to the non-studied CI, yielding lower false memory
rates for CIs with high C.

Furthermore, to check whether the influence of C on
false memory rates for CIs would also be found with a
different set of words, a linear multiple regression
analysis was performed on the 24 critical items used in
the experiments by Sommers and Lewis (1999). The vari-
ables clustering coefficient, concreteness, word frequency,

Table 1
Mean (and standard deviation) values of the lexical characteristics of the
non-studied critical items in Experiment 1.

High C Low C

Familiarity 6.80 (.56) 6.73 (.59)
Word frequencya 1.21 (.81) 1.15 (.78)
Degree (a.k.a. neighborhood

density)
17.00 (4.47) 17.00 (4.47)

Neighborhood frequencya 1.07 (.30) .98 (.16)
Spread 2.60 (.51) 2.86 (.35)
Segment frequency .134 (.012) .152 (.009)
Biphone frequency .006 (.001) .008 (.001)
Concreteness ratings 477.00

(73.60)
499.40
(34.53)

Network density of 2-hop
neighborhood

.06 (.01) .06 (.01)

a log10 values of occurrences per million.
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phonotactic probability (i.e., segment and biphonefrequency),
degree, and neighborhood frequency were used to predict
the false alarm rates observed in Experiment 1 (as reported
in Fig. 2) of Sommers and Lewis (1999).

Although the overall analysis was not statistically signif-
icant (R2 = .34, F(7,16) = 1.18, p = .36), we report in Table 2
the beta coefficients (ß; also known as standardized coeffi-
cients) for each variable. The magnitude of ß allows one to
compare the relative contribution of each independent
variable in the prediction of the dependent variable. The
sign (+ or �) associated with the ß coefficient indicates
the direction of the relationship between the independent
and dependent variables. We also report for each ß
coefficient the results of a t-test, which indicates that the
independent variable made a statistically significant
contribution to the prediction of the dependent variable
(even though the value of ß might be numerically small).

None of the independent variables made a statistically
significant contribution to the prediction of the false alarm
rates in Sommers and Lewis (1999), by the conventional
standard of p < .05. However, C does have the largest ß
coefficient, and it is negative (indicating few false alarms
for higher C values, and many false alarms for lower C val-
ues). Replicating the effect—at least in direction—observed
in the present experiment with a different set of words
provides a reassuring piece of converging evidence, and
minimizes the concern that the observed effect was due
to a ‘‘specially selected’’ set of items.3

Before discussing the implications of these findings we
address a few other ancillary issues in the present experi-
ment. First, one might wonder if the false memory phenom-
enon was actually observed in the present experiment. The
mean proportion of studied items called old in the recogni-
tion task was .58 (sd = .12), and the mean proportion of CIs
that were falsely recalled was .57 (sd = .17). This difference
was not statistically different (F(1,20) = .323, p = .576,
g2 = .16), suggesting that participants were as confident
that they studied the CIs as they were that they had studied
items from the lists that had actually been presented. Fur-
thermore, the false recognition rate for non-studied items
other than CIs was less (.43, sd = .17) than the false recogni-
tion rate for the CIs (.57, sd = .17, F(1,20) = 19.76, p < .0001,
g2 = .497), indicating that participants did not indiscrimi-

nately respond ‘‘old’’ to most items in the recognition task.
These results suggest that false memories were indeed
elicited.

To further examine the nature of the ‘‘false memories’’
for the CIs, we analyzed the false recognition rates for
the CIs used as foils in the recognition task (i.e., words that
varied in C, but whose neighbors were not presented in the
study session). A difference in C was observed for the CIs
used as foils in the recognition task, such that more false
memories occurred for words with low C (mean = .53,
sd = .29) than for words with high C (mean = .40, sd = .21;
t(20) = 2.75, p < .05, Cohen’s d = .52), even though the
neighbors of these CIs had not been presented during the
study phase of the experiment. This finding is consistent
with the idea that the fluency with which information is
retrieved from long-term memory (i.e., the mental lexicon)
can influence memory judgments (Benjamin, Bjork, &
Schwartz, 1998). However, we further observed that the
false recognition rates for the CIs whose neighbors had
been presented in the study session was greater
(mean = .57, sd = .17) than the false recognition rates for
the CIs whose neighbors had not been presented in the
study session (mean = .47, sd = .23; t(20) = 2.34, p < .05,
Cohen’s d = .49), indicating that memory for the studied
neighbors had an additional influence on the false recogni-
tion of the non-studied CIs. These results further suggest
that false memories were indeed elicited in the present
experiment, and that C not only influences perceptual
processes, but memory-based processes as well.

One might also wonder if some other characteristic
about the phonologically similar words that were studied
(i.e., the neighbors of the CI) influenced the present experi-
ment. We acknowledge the possibility that the lists of
phonologically similar words may differ on some psycholin-
guistic measure.4 However, recall that the network science
measure known as network density (of the 2-hop neighbor-
hoods) was the same for the two types of words. The network
density of the 2-hop neighborhoods assesses the number of
neighbors of the phonologically similar words that were
studied, as well as the connectivity among those words. Based
on our account of the diffusion of activation in the network,
and the similarity in the 2-hop neighborhoods of words with
high and low C, it is not surprising that no difference was
observed in the recognition rates for the studied neighbors
of critical items with high (mean = .58, sd = .15) versus low C
(mean = .58, sd = .11; t(20) = .12, p = .90). In other words, it
appears unlikely that some characteristic about the phono-
logically similar words that were studied (or the neighbors
of those words) is responsible for the observed difference in
false alarm rates for words varying in C.

The results of the present experiment demonstrate that
the network structure exhibited by phonological word-
forms in the mental lexicon influences the long-term
memory phenomenon of ‘‘retrieving’’ false memories, not

Table 2
Summary information of linear multiple regression predicting false alarm
rates for words used in Experiment 1 of Sommers and Lewis (1999).

ß t p-Value

C �.42 �1.78 .09
Concreteness .25 .88 .39
Word frequency .31 1.28 .22
Segment frequency �.05 �.16 .87
Biphone frequency �.16 �.63 .54
Neighborhood frequency .06 .22 .82
Degree �.33 �1.19 .25

3 Note that the values of C for the stimuli used in Sommers and Lewis
(1999) were more restricted (lowest C = .214; highest C = .341) than those
used in the present experiment (mean low C = .218; mean high C = .576).
We believe the restricted range of C found in the stimuli used by Sommers
and Lewis (1999) is a contributing factor in our failure to find a difference
that was statistically significant in our post hoc analysis of their stimuli.

4 Sommers and Lewis (1999) analyzed the influence that several other
characteristics of the phonologically similar words that were studied might
have on false recognition rates, and found that none of the additional
factors they examined—including the frequency of the CI (which was
controlled in the present experiment) and the number of list items that had
frequencies higher than the CI—significantly influenced performance either.
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just the on-line production and recognition of spoken words
(Chan & Vitevitch, 2009, 2010). It is also interesting and
theoretically elegant that (at an abstract level) a common
mechanism—the structure of the network—may account
for observations made in several cognitive domains, and in
social, biological, and technological domains (Newman,
2003).

Experiment 2

In Experiment 1 we demonstrated that activation
spreading through lexical networks with different struc-
tural characteristics (i.e., clustering coefficient) can differ-
entially influence the activation of non-studied target
words, thereby producing more ‘‘false memories’’ for target
words with low C than high C. In the present experiment we
wished to further examine how the structure of the lexical
network might influence processes associated with long-
term memory by demonstrating that network structure
would also influence veridical memories of studied target
items in an old-new recognition memory task. In the study
phase of the present experiment, participants heard a list of
words that they were asked to remember. In the test phase,
participants were then presented with a list of words that
included the items that they had studied, as well as words
that they had not studied, and were asked to indicate if the
word they heard in the test phase was one of the words
from the previously studied list (i.e., old) or not (i.e., new).

If the structure of the lexicon influences subsequent
recognition of the target words, we predict that words with
low C will be better recognized than words with high C in
the recognition test. Because the words used in the present
study (as described in the Methods section) are compara-
ble on a number of other relevant psycholinguistic mea-
sures, the initial activation of the target words will be the
same. Only C, and therefore the amount of activation that
feeds back to the target words from the neighbors, differs
between the two conditions.

For words with low C, like log in Fig. 2, activation will
spread from the target word to the neighbors. Because
the neighbors are less interconnected, only a small amount
of activation will circulate amongst the neighbors. The rest
of the activation will spread from the neighbors back to the
target word (resulting in higher activation of the target
word), and from the neighbors to other parts of the net-
work. For words with high C, like badge in Fig. 2, activation
again spreads from the target word to the neighbors.
However, most of the activation will tend to circulate
amongst the highly interconnected neighbors, with less
activation spreading from the neighbors back to the target
word and to the rest of the network. The different amount
of activation remaining amongst the neighbors (and there-
fore the different amount of activation feeding back to the
target words) will result in words with low C being recog-
nized more accurately than words with high C.

Methods

Participants
Forty-four native speakers of Australian-English from

the University of Wollongong took part in the experiment.

None of the participants reported a history of speech or
hearing disorders, or participated in the other experiments
reported here.

Materials
Forty monosyllabic words were used as studied items in

the present experiment (see Appendix C). Twenty studied
items had high C (mean = .531, sd = .15) and 20 had low C
(mean = .302, sd = .05; t(38) = 6.26, p < .0001). Although
the two sets of words differed in C, they were equivalent
(all p’s > .10) in word frequency, degree/neighborhood den-
sity, concreteness ratings, network density of the 2-hop neigh-
borhood and imagability ratings (see Table 2). Forty
additional monosyllabic words were selected as distracter
items for use in the test phase of the recognition task. The
distracter items were comparable to the studied items (all
p’s > .10) in word frequency, degree/neighborhood density,
concreteness ratings, and imagability ratings (see Table 3).
All stimuli were digitally recorded by a female native Aus-
tralian English speaker and edited to single word files
using ProTools LE software and MBox hardware (Digide-
sign, Inc.).

Procedure
Participants were tested in groups of up to 5 at a time,

on separate computers using the experimental control
software SuperLab (Cedrus Corp.). Each participant lis-
tened, via headphones, to a different random arrangement
of the forty target stimuli and then completed 2 min of
simple arithmetic as a delay task. The arithmetic problems
were presented visually and participants responded on the
computer keyboard. Following the delay task participants
heard the forty target words randomly mixed with the
distracters and responded ‘‘old’’ or ‘‘new’’ by pressing des-
ignated keys on the keyboard.

Results and discussion

To examine the ability of participants to discriminate
between old and new items we computed d0 values for
the words with high C and low C for each participant (fol-
lowing MacMillan & Creelman, 2005). This measure com-
bines ‘‘hits’’ (i.e., successfully indicating that a word was
indeed from the list of studied words) and ‘‘false alarms’’
(i.e., incorrectly indicating that a word was from the stud-
ied list) in discrimination tasks, thereby giving a single,
bias-free measure of sensitivity. Larger values of d0 indicate
that participants were better able to discriminate that a
word had indeed appeared on the studied list, and were
not simply inclined to indicate that all words had appeared
on the studied list (or that a word could be retrieved
fluently from long-term memory; Benjamin, Bjork, &
Schwartz, 1998). d0 is the most appropriate measure to
use in this instance as it takes into account individual dif-
ferences in false alarm rates and bias.

Words with low C (mean = 1.89, sd = .79) had larger val-
ues of d0 than words with high C (mean = 1.74, sd = .78;
t(43) = 2.03, p < .05), indicating that participants were
more accurate in indicating whether words with low C
were (or were not) from the studied list. This finding is
consistent with the prediction derived from the verbal
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framework described in Chan and Vitevitch (2009)—words
with low C will be better recognized than words with high
C in the recognition test.

These results further suggest that the influence the
structure of the phonological network has on processing
is not limited to language-related processes such as word
recognition (Chan & Vitevitch, 2009) or word production
(Chan & Vitevitch, 2010). Rather, as demonstrated in
Experiments 1 and 2, the structure of the phonological net-
work influences the retrieval of information from long-
term memory as well.

Experiment 3

The present experiment examined how the network
structure found in the mental lexicon might influence redin-
tegration in short-term memory (Schweickert, 1993). Exam-
ining the process of redintegration provides a conceptual
bridge from the previous two experiments (which exam-
ined certain aspects of long-term memory) to another fun-
damental domain of cognition: short-term memory. In
redintegration, information in long-term memory is used to
reconstruct degraded representations retrieved from
short-term memory. In the account of redintegration de-
scribed by Hulme et al. (1997), an item is retrieved directly
from the short-term memory store if its representation is
intact. However, if a representation in short-term memory
is partially degraded, it will be compared to phonological
representations that are permanently stored in long-
term memory (i.e., the mental lexicon) to ‘‘clean up’’ the
representation in short-term memory. Furthermore, the
proposal of Hulme, Maughan, and Brown (1991) that verbal
short-term memory processes might be considered a by-
product of processes involved in speech perception and
production makes the process of redintegration an ideal
phenomenon to further examine the influence that the
structure observed in the mental lexicon might have on
other cognitive processes.

A task commonly used to examine short-term memory
and the process of redintegration is the serial recall task in
which participants hear a list of words and immediately re-
call them in the order the words were presented. Using this
task, Roodenrys et al. (2002) found that lists of words that
activated many phonologically similar words in the lexicon

(i.e., lists of words with high degree/dense phonological
neighborhoods) were recalled more accurately than lists
of words that activated few phonologically similar words
in the lexicon (i.e., lists of words with low degree/sparse
phonological neighborhoods), demonstrating the influence
that the number of phonologically similar words stored in
long-term memory have on the redintegration of decayed
memory traces retrieved from short-term memory.

The results of Experiments 1 and 2 from the present
study suggest that the amount of activation that circulates
amongst phonological neighbors influences how much
activation flows back to the target word, differentially acti-
vating target words with low C over words with high C.
Therefore, we hypothesized that words with low C would
be more highly activated and therefore have more intact
representations in short-term memory than words with
high C, resulting in lists composed of low C words being re-
called more accurately than lists composed of high C
words. Furthermore, Hulme et al. (1997) claimed that
items that appear later in a list are more likely to become
degraded than items that appear earlier in the list. There-
fore, we hypothesized that the difference in performance
between lists of words with high versus low C would be
greatest in the later items in a word-list than in the earlier
items in a word-list in the serial recall task.

To test these hypotheses we used a serial recall task as
in Roodenrys et al. (2002). However, instead of manipulat-
ing degree/the number of phonological neighbors as in
Roodenrys et al. (2002), we instead manipulated C. In the
serial recall task used in the present experiment, partici-
pants heard lists that contained six words, such that all
the words had high C or all the words had low C. Crucially,
the word-lists varying in C were the same in terms of the
number of phonologically similar words they would acti-
vate in the lexicon (and on a number of other relevant vari-
ables), therefore the initial activation of the list of words
will be the same. Only C—and the amount of activation that
feeds back from their respective neighbors to the words on
the list—differs between the two conditions.

Methods

Participants
Forty participants from the same population in Experi-

ment 1 took part in the present experiment.

Materials
Thirty-two words were used in the present experiment

(see Appendix D). Sixteen words had high C (mean = .349,
sd = .04) and 16 words had low C (mean = .237, sd = .03;
F(1,31) = 76.01, p < .0001). Although the two sets of words
differed in C, they were equivalent (all p’s > .10) in familiar-
ity (measured on a seven-point scale), word frequency
(Kučera & Francis, 1967), degree/neighborhood density,
neighborhood frequency, neighborhood spread, segment and
biphone frequency, and concreteness ratings (see Table 4).

The words in each condition were pseudo-randomly as-
signed (such that phonological neighbors could not appear
in the same list) to create 16 lists of six words in each
condition. Creating two different samples of 16 lists, and
two different orders of the lists in each condition

Table 3
Mean (and standard deviation) values of the lexical characteristics of the
studied words in Experiment 2.

High C Low C Distracter
items

Word frequency 248.70
(252.38)

284.90
(248.93)

218.85
(94.44)

Degree (a.k.a.
neighborhood density)

19.25
(11.01)

21.00
(8.68)

21.84
(8.91)

Concreteness ratings 512.08
(115.11)

504.87
(123.71)

518.52
(89.33)

Imagability ratings 535.00
(91.96)

524.80
(64.75)

530.04
(70.06)

Network density of the 2-
hop neighborhood

.08 (.06) .06 (.02) .06 (.03)
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minimized potential order effects. As there were no statis-
tically significant differences in recall across the various
orders, subsequent analyses collapsed across this factor.

Procedure
Participants were presented with the 16 lists in each

condition in a counterbalanced order in a single session
lasting approximately 30 min. The lists were presented over
headphones at the rate of approximately 1 word per second
using the same equipment as used in Experiment 1. At the
end of each list the prompt ‘‘Recall’’ appeared on the screen,
and participants recalled aloud the list of words in the order
they were presented. Participants were instructed to say
‘‘pass’’ if they could not remember an item in a particular
position. Responses were recorded for independent scoring
at a later time by two research assistants (reliabil-
ity = 98.91%). Discrepancies in scoring were resolved by an
independent judge.

Results and discussion

Consistent with our initial hypotheses, we observed an
interaction of C and serial position (F(5,195) = 7.58,
p < .0001, g2 = .51), such that large differences in recall per-
formance were observed in the later positions of the lists
(�10%; see Fig. 3) compared to the earlier positions of the
lists. However, in contrast to our initial hypotheses, partic-
ipants overall recalled more words from lists containing
high C words (mean = 3.15 words out of 6, sd = 1.1) than
from lists containing low C words (mean = 2.84 words out
of 6, sd = 1.4; F(1,39) = 15.18, p < .0001, g2 = .30). We
initially hypothesized that words with low C would be more
highly activated and therefore have more intact representa-
tions in short-term memory than words with high C, result-
ing in lists composed of low C words being recalled more
accurately than lists composed of high C words. As seen in
Fig. 3, better recall for words with low C compared to words
with high C was observed in the first position of the lists.
However, this difference was not statistically significant;
it was only observed numerically.

A statistically significant advantage for low C words
over high C words in the initial positions of the list might
be observed if the primacy effect was accentuated, perhaps
by reducing the length of the list or slowing the rate of pre-
sentation. Such well-studied manipulations in a serial-re-
call task using word lists varying in C could provide
additional insight into models of STM and on the process
of redintegration. However, such manipulations are be-
yond the scope of the present study, which sought simply
to determine if the network structure exhibited among
words in the phonological lexicon influenced cognitive
processes other than spoken word recognition and spoken
word production (Chan & Vitevitch, 2009, 2010).

Although the observed results are not entirely consis-
tent with our initial predictions, the observed results are
informative in a number of ways. First, C clearly influences
short-term memory. Just as the use of phonological neigh-
borhood density (known as degree in the network science
literature) in studies by Roodenrys et al. (2002) provided
new insight to the processes of short-term memory and
redintegration, the results from the present study open

up a new avenue of investigation for memory researchers.
Indeed, if we consider the work of Roodenrys et al. (2002),
as well as the account of redintegration described by
Hulme et al. (1997), and the spreading-activation account
described in Chan and Vitevitch (2009, 2010) the present
result hints toward an interesting phenomenon—stochas-
tic resonance—that also warrants future investigation.

Recall that Hulme et al. suggested that items with intact
representations are retrieved directly from the short-term
memory store. However, if a representation in short-term
memory is partially degraded, it will be compared to pho-
nological representations that are permanently stored in
long-term memory to ‘‘clean up’’ the representation in
short-term memory. Furthermore, items that appear later
in a list are more likely to become degraded than items
that appear earlier in the list. Moreover, Roodenrys et al.
(2002; see also Roodenrys & Hinton, 2002) showed that
the number of phonologically similar words in the lexicon
(i.e., neighborhood density, or degree) influenced the pro-
cesses of recall and redintegration. Here we make the same
assumptions made by Roodenrys et al. (2002, p. 1028):

If we assume that words in a phonological neighbor-
hood are associatively linked in lexical memory, our
hypothesis would be that such groups of associated
words will all be activated to some extent by the pre-
sentation of one word from the neighborhood. A further
assumption is that members of a neighborhood form a
mutually supportive network of items. Words from
large neighborhoods will receive supportive activation
from more other words at recall than words from small
neighborhoods.

In the present case, representations of the words in the
beginning of the lists remained relatively intact, but repre-
sentations of words at the end of the lists began to decay.
For the decaying representations in the later part of the list,
phonologically similar representations stored in long-term
memory are called upon to ‘‘clean up’’ the representation
in short-term memory. That is, redintegration is more
likely to take place in the later part of the list than the
beginning of the list. As per Roodenrys et al. (2002), redin-
tegration relies on the activation of the target word in
long-term memory as well as the activation of the neigh-
bors of the target word.

As per Chan and Vitevitch (2009), activation is thought
to circulate predominately amongst the neighbors for
words with high C, but to disperse to other parts of the
network for words with low C. Although this pattern of
spreading activation is beneficial to performance for words
with low C in most contexts, in the present case—when
phonologically similar representations are needed to
‘‘clean up’’ a representation in short-term memory—the
dispersion of activation to the rest of the network provides
little support to the decaying representation in short term
memory. The lack of support that phonologically similar
representations provide in the redintegration of words
with low C results in poor performance on these words
in the latter part of the list in the serial recall task.

However, in the case of words with high C, activation
tends to circulate amongst the highly interconnected neigh-
bors. The activation in this cadre of phonologically similar
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representations may provide sufficient information to
‘‘clean up’’ the representations of words with high C in
short-term memory, resulting in successful redintegration
and better performance in the serial recall task for words
with high C. Although the activation circulating among pho-
nologically similar representations may, in many contexts,
produce ‘‘noise’’ in the system and prove detrimental to
performance for words with high C, in the present context
this noise may improve detection of a weak signal (i.e., the
decayed representation of the target word with high C),
much like moderate—but not excessively high or low—
amounts of noise can improve signal-to-noise ratios in
systems undergoing the phenomenon of stochastic reso-
nance. Stochastic resonance has been observed in neural
(e.g., Martínez, Pérez, Mirasso, & Manjarrez, 2007) and
perceptual systems (cf., Shepherd & Hautus, 2009). The hint
of this phenomenon in a cognitive system, as observed in the
present experiment (see also Usher & Feingold, 2000), war-
rants further research. Thus, even though the present result
is not consistent with the prediction derived from the
computer model in Vitevitch et al. (2011), the result is con-
sistent with other findings in the broader literature on
short-term memory and redintegration, and hints towards

a new phenomenon—stochastic resonance—to investigate
in future research.

Finally, the observed result points to potential limita-
tions of the computational model examined by Vitevitch
et al. (2011). The simple model examined by Vitevitch
et al. (2011) contained only lexical representations (and
connections among phonologically related word-forms),
but was able to account for several results observed in stud-
ies of spoken word recognition, including the influence of C
(Chan & Vitevitch, 2009) and the influence of neighborhood
density (Luce & Pisoni, 1998) on spoken word recognition.
To account for the present result (as well as other results
in the literature, as acknowledged in Vitevitch et al.,
2011), an additional short-term memory store or an addi-
tional level of representation may need to be added to the
model. Indeed, a number of studies have demonstrated
the role that sub-lexical representations—phonological
segments, or sequences of segments—play in spoken word
recognition (e.g., Vitevitch, 2003; Vitevitch & Luce, 2005;
Vitevitch, Pisoni, Kirk, Hay-McCutcheon, & Yount, 2002)
and speech production (e.g., Vitevitch, Armbruster, & Chu,
2004), two processes that have been implicated in some
models of short-term memory and redintegration (e.g.,
Hulme et al., 1997). The unanticipated results of the present
experiment suggest further that the simple computational
model examined by Vitevitch et al. (2011) may indeed be
too simple.

Although the results of the present experiment did not
conform entirely to our initial predictions, the results point
to several new avenues of investigation. In addition, the re-
sults of the present experiment further demonstrate that
network structure not only influences the on-line recogni-
tion and production of spoken words (e.g., Chan & Vitevitch,
2009, 2010), but it also influences other cognitive phenom-
ena associated with long-term and short-term memory (i.e.,
redintegration).

General discussion

Previous network science analyses of phonological
word-forms in the mental lexicon found a set of structural
characteristics appearing across a variety of languages
(e.g., Arbesman et al., 2010; Vitevitch, 2008). Because it is
often argued that the structure of a network influences pro-
cessing in that system (Watts & Strogatz, 1998), Chan and
Vitevitch (2009, 2010) used several conventional psycholin-
guistic tasks to examine how one structural characteristic—
clustering coefficient—might influence the production and
recognition of spoken words. In the present study, we
further examined how the emergent structure of represen-
tations in the mental lexicon—that portion of long-term
memory devoted to language—might influence phenomena
in long-term and short-term memory.

In Experiment 1 we examined processes associated with
long-term memory by eliciting false memories for English
words that varied in clustering coefficient. Participants
studied lists of words that were phonologically similar to
non-studied critical items (which varied in clustering coef-
ficient). In a recognition task, participants falsely recog-
nized more non-studied critical items that had low C than

Table 4
Mean (and standard deviation) values of the lexical characteristics for the
stimuli from Experiment 3.

High C Low C

Familiarity 6.91 (.16) 6.95 (.10)
Word frequencya 1.37 (.71) 1.21 (.49)
Degree (a.k.a. neighborhood

density)
19.38 (5.10) 18.19 (7.42)

Neighborhood frequencya 2.02 (.20) 1.91 (.16)
Spread 2.88 (.34) 2.94 (.25)
Segment frequency .138 (.03) .137 (.04)
Biphone frequency .006 (.005) .005 (.003)
Concreteness ratings 316.88

(239.92)
315.81
(274.85)

Network density of 2-hop
neighborhood

.05 (.01) .06 (.02)

a log10 values of occurrences per million.

Fig. 3. In the serial recall task participants more accurately recalled
words with high C than low C, especially toward the end of the
to-be-recalled list.
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high C. In Experiment 2 we examined recognition memory
for events that actually occurred (rather than ‘‘false’’ mem-
ories as in Experiment 1). In an auditory old-new recogni-
tion task, participants were more accurate recognizing
words with low C than high C. In Experiment 3 we examined
the process of redintegration, in which representations in
long-term memory are used to reconstruct degraded repre-
sentations in short-term memory. In a serial recall task, a
task commonly used to examine redintegration, partici-
pants more accurately recalled word-lists comprised of
words with high C than with low C, especially in the later
portion of the word-list.

Despite the different types of memory and different
cognitive processes being examined, the network frame-
work described in Chan and Vitevitch (2009) was able to
provide an account for the results of all of the present
experiments, although it must be acknowledged that the
counter-intuitive results of Experiment 3 would require
additional assumptions from the short-term memory liter-
ature and require further model development. In this
framework the mental lexicon is viewed as a small-world
network, and lexical retrieval is viewed as a search through
that network (e.g., Kleinberg, 2000), much like the Page-
Rank algorithm (Page, Brin, Motwani, & Winograd, 1998)
searches through the structured network of information
that is the World-Wide Web.

A common way to conceptualize search processes in
cognitive science is with a spreading activation mecha-
nism. Chan and Vitevitch (2009) described a network with
a resource-limited form of spreading-activation. In the case
of words with low C, activation spreads from the target
word to the phonological neighbors. Because the neighbors
are less interconnected, only a small amount of activation
will circulate amongst the neighbors. The rest of the activa-
tion will spread from the neighbors back to the target
word, and from the neighbors to other parts of the net-
work. For words with high C activation again spreads from
the target word to the neighbors. However, most of the
activation will tend to circulate amongst the highly inter-
connected neighbors, with less activation spreading from
the neighbors back to the target word and to the rest of
the network. The different amount of activation feeding
back to the target words (and remaining amongst the
neighbors) results in differences in the speed and accuracy
with which words varying in C are responded to (see
Vitevitch et al. (2011) for a network simulation of the
word-recognition effects observed in Chan & Vitevitch,
2009).

In the present study, we further examined the frame-
work proposed by Chan and Vitevitch (2009) by presenting
participants in Experiment 1 with phonological neighbors,
and assessing how much activation spread from the neigh-
bors to the (non-studied) target words, resulting in false
memories for those critical items. In Experiment 2 we
extended the framework by measuring how the spread of
activation influenced the recognition of previously pre-
sented words. In Experiment 3 we extended the frame-
work by measuring how activation in long-term memory
might influence processes related to retrieval from short-
term memory (i.e., redintegration). The results of these
experiments suggest that the structure of the lexical

network may influence more than just on-line recognition
and production of spoken words.

Cognitive scientists have made much use of ‘‘net-
works’’ to explore human cognition (e.g., artificial neural
networks, Rosenblatt, 1958; networks of semantic mem-
ory, Quillian, 1967; linguistic nections, Lamb, 1970). How-
ever, these earlier approaches should not be confused
with the current approach of network science (Jasny,
Zahn, & Marshall, 2009; Watts, 2004). Without denying
the broad and important influence that spreading-activa-
tion/semantic networks and connectionist networks have
had on Cognitive Science, the present study examined
how the alternative approach of network science might
be used to understand certain aspects of cognition.
Although the network science perspective has been
widely employed in other fields to explore technological,
biological, and social systems (e.g., Albert & Barabási,
2002), the network science perspective has been rela-
tively underutilized in the cognitive and neural sciences
(see Borge-Holthoefer et al. (2011) and Sporns (2010) as
exceptions). The results of the present experiments, as
well as the experiments reported in Chan and Vitevitch
(2009, 2010), demonstrate how the network science per-
spective can be used to examine the structure of complex
cognitive systems, and, more importantly, to test novel
hypotheses about cognitive processing.

It is not clear how the questions examined in the pres-
ent experiments regarding the relationship among phono-
logical neighbors, as measured by C, could have been posed
in the context of current models of long-term memory
(e.g., Izawa, 1999) or short-term memory (e.g., Hulme
et al., 1997; Lewandowsky, 1999; Roodenrys & Miller,
2008; Schweickert, 1993). Furthermore, it is unclear if
any of these current models can account for the influence
of C that was observed in the present experiments, sug-
gesting that network science might offer psychological sci-
ence a new perspective on fundamental questions of
cognitive processing. Clearly additional work is required
to understand how network structure might influence
other cognitive processes, providing a potentially fruitful
opportunity for collaboration between network and cogni-
tive scientists.
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Appendix A

See Fig. A1.

Appendix B

The words used in Experiment 1. The (non-studied) crit-
ical item is in the left column, and the (studied) neighbors
are in the right column.

High C

badge back, bad, bag, ban, bang, badger, bass, bat,
batch, bath

bathe babe, bail, bait, baize, bake, bane, base, bay,
beige, lathe

chair air, bare, care, check, cherry, fair, pair, rare,
share, their,

chill bill, chin, chip, fill, hill, ill, kill, mil, pill, will,
gear beer, cheer, dear, ear, fear, gear, hear, mere,

pear, rear
hair air, bare, care, fair, head, hear, hell, pair,

share, their
league lea, leaf, leak, lean, leap, lease, leave, leg,

legal, log
leash lash, lea, leaf, leak, lean, leap, lease, leave,

lied, lush
path bath, math, pack, pad, pal, pan, pass, pat,

patch, wrath
robe aerobe, roar, rob, roe, role, rope, rose, rote,

rub, road
shot chute, got, hot, knot, lot, pot, sheet, shock,

shop, shut
siege cease, cede, sage, scene, seal, seam, seat,

seek, seize, serge
thought aught, bought, caught, fought, naught,

sought, taught, thaw, thong, wrought
thug bug, chug, dug, hug, jug, mug, rug, thud,

thumb, tug
vat at, cat, fat, hat, pat, sat, that, van, vast, vote

Low C

fray fry, frail, frame, freight, gray, phrase, pray,
ray, tray, bray

glow blow, flow, glee, gloat, globe, glue, go, grow,
low, slow

gut but, cut, gait, get, got, gum, gun, hut, nut, shut
limb dim, gym, him, lamb, lid, lime, limp, lip, live,

slim
merge dirge, emerge, midge, mirth, murk, myrrh,

purge, serge, urge, verge
ply fly, lie, pie, play, plea, plight, plough, ploy, pry,

apply
pose chose, hose, nose, pause, peace, pole, poor,

pop, rose, those
sauce boss, cease, loss, moss, saucer, saw, song,

sought, souse, toss
serve curve, nerve, salve, save, search, serf, serge,

sieve, sir, verve
side seed, cite, hide, ride, sad, said, sign, size, tide,

wide
sing king, ring, sick, sin, sink, sit, song, swing,

thing, wing
slay clay, lay, play, say, slate, slave, slow, slain,

stay, sway
sly fly, lie, sigh, sky, slaw, sleight, slice, slide,

slow, spy
tree free, tea, three, tray, treat, trio, trow, troy,

true, try
verse curse, hearse, nurse, purse, vase, verb, verge,

vice, voice, worse

Appendix C

The high C words, low C words, and distracter items
used in Experiment 2.

High C Low C Distracter items

badge bib bears noon
beef boot boil pays
beige bug cage pill
born bush chap pine
cough couch chart pop
dot deck chess porch
gain goat dim raid
gauze kick dish rash
jet lag fees ridge
joke ledge fetch rub
knife luck fork sack
math lurch fuss seal
merge mile harsh shark
morgue mood juice shone
mouse nerve lace shout
nudge purse leap tooth
pub ripe lid toys
thumb sauce mate warn
wash shove nail wit
zip soup nod zone

Fig. A1. The scattergram for the 6281 words with 2 or more neighbors
(the minimum number of neighbors required to compute clustering
coefficient, C) from the network examined in Vitevitch (2008) illustrating
that C and degree (k) are not correlated. The correlation value for these
data is reported in the text and in Chan and Vitevitch (2010).
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Appendix D

The high C and low C words used in Experiment 3.

High C Low C

bib bush
bug boot
dot gas
gang goat
gain gull
gum cough
case couch
lag ledge
look luck
lose merge
math mood
mouse mile
ring sauce
ripe beach
size deck
wire purse
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