
What Can Graph Theory Tell Us About
Word Learning and Lexical Retrieval?

Purpose: Graph theory and the new science of networks provide a mathematically
rigorous approach to examine the development and organization of complex systems.
These tools were applied to the mental lexicon to examine the organization of words
in the lexicon and to explore how that structure might influence the acquisition and
retrieval of phonological word-forms.
Method: Pajek, a program for large network analysis and visualization (V. Batagelj &
A. Mvrar, 1998), was used to examine several characteristics of a network derived
from a computerized database of the adult lexicon. Nodes in the network represented
words, and a link connected two nodes if the words were phonological neighbors.
Results: The average path length and clustering coefficient suggest that the phonological
network exhibits small-world characteristics. The degree distribution was fit better by
an exponential rather than a power-law function. Finally, the network exhibited
assortative mixing by degree. Some of these structural characteristics were also found
in graphs that were formed by 2 simple stochastic processes suggesting that similar
processes might influence the development of the lexicon.
Conclusions: The graph theoretic perspective may provide novel insights about
the mental lexicon and lead to future studies that help us better understand language
development and processing.
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I n the present analysis, graph theoretic techniques were used to ex-
amine the complex cognitive system known as the mental lexicon.
Graph theory is a branch of mathematics used by physicists, computer

scientists, and other researchers interested in the “new” science of net-
works (Watts, 2004) to study the structure of a diverse array of complex
systems in the real world. Complex systems are comprised of a large
number of individual units that interact in relatively simple ways. De-
spite the simple, predictable nature of the individual components on a
local level, these large systems often exhibit behaviors that may appear
unpredictable at a global level.

Although graphs simply describe the structure of a system, theway in
which a system is organized has important implications for the type of
processing that can be carried out in that system (Strogatz, 2001; Ward,
2002). For example,Montoya and Solé (2002) used the techniques of graph
theory to create a graph (ornetwork) of various ecosystemsby representing
the animals in an ecosystem as nodes (sometimes called vertices or actors)
and the predator–prey relationship between animals as links (sometimes
called edges or ties) to examine how the extinction of a given species might
affect the rest of the ecosystem. The present graph theoretic analyses
examined the organization of phonological word-forms in the adult lexicon
to explore how the structure of the mental lexiconmight influence the pro-
cess of lexical retrieval.
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The current structure of a system has been influ-
enced by (among other things) the growth and develop-
ment of that system. Certain constraints on development
may result in the emergence of one type of structure but
not in the emergence of some other type of structure. By
studying the current structure of a system, one might
gain insight into the constraints that could have led to
that type of structure. Although several different con-
straints may produce the same final structure, analyses
of the current structure do serve to rule out some pos-
sible developmental mechanisms. Therefore, structural
analyses employing graph theoretic techniques may
help other research endeavors to focus their investiga-
tions on amore reasonably sized search space of possible
developmental mechanisms. The present graph theoretic
analyses examined the current structure of phonological
word-forms in the adult lexicon to also gain some insight
on the constraints that may influence lexical acquisition
and word learning.

Some readers might be familiar with the terms node,
link, and network in the context of connectionist models,
or artificial neural networks. However, it is important to
note that the networks discussed in the present work are
not artificial neural networks. That is, the nodes in the
present networks do not have activation states or rules to
change activation states like the nodes in an artificial
neural network. Furthermore, the links in the present
networks do not have weights associated with them or a
learning rule (e.g., back-propagation of error) to change
the connectionweights between nodes. In other words, the
present networks are not artificial neural networks that
model a cognitive process. Rather, the present investiga-
tion employed graph theoretical analysis techniques to
examine the global structure or organization of phono-
logical word-forms that might appear in the mental lex-
icon of a typically developing adult. Although increased
understanding of the structure of phonological word-
forms in the mental lexicon might lead to insights re-
lated to the processing of phonological word-forms during
the perception or production of speech and to insights
related to the mechanisms that might influence word
learning, it is important to emphasize that the present
graph theoretical analysis is not amodel of any language
process.

Several researchers have used graph theoretic tech-
niques to examine semantic relationships among words
in themental lexicon. Similar conclusions about the struc-
ture of semantically related words were reached even
though several different definitions of “semantically
related” were used, including words that were free as-
sociates of each other, synonym pairs, core words from
dictionary definitions, or co-occurringwords in text (Albert
& Barabási, 2002; Batagelj, Mrvar, & Zaveršnik, 2002;
Ferrer i Cancho & Solé, 2001b, Motter, de Moura, Lai, &
Dasgupta, 2002; Steyvers & Tenenbaum, 2005; Wilks &

Meara, 2002; Wilks, Meara, & Wolter, 2005). Given the
arbitrary relationship between semantic and phonolog-
ical representations (Saussure, 1916/1966), it is unclear
whether the same network structure found in a network
of semantic representationswill be found in a network of
phonological word-forms.

In the present graph theoretic analysis, the nodes in
the network represented phonological word-forms in the
English language (i.e., lexemes), and a link was placed
between two nodes if they were phonological neighbors
of each other (e.g., Luce & Pisoni, 1998). That is, the links
in the present network were not directed and were not
weighted. More complex relationships among nodes can
be modeled by incorporating directed or weighted links.
In a network with directed links (sometimes called arcs),
connections between two nodes are not necessarily re-
ciprocal. For example, X may buy a good from Y, but Y
does not buy a good from X. See Harary, Norman, and
Cartwright (1965) for an introduction to graphs with
directed links. In a graph with weighted links, the rela-
tionship between some nodesmight be stronger or weaker
than the relationship between other nodes. For example,
X and Y might be lifelong friends, so the link between
them might be weighted with a 1. In contrast, X and Z
may simply be acquaintances, so the link between them
might be weighted with a .25. See Roberts (1976) for an
introduction to graphs with weighted links.

Althoughmore complexnetworks canbe constructed,
the present investigation analyzed simple network mod-
els to explore the most fundamental characteristics that
might shape the mental lexicon. Some of the character-
istics that shape the development of the lexicon might be
common to other types of systems that have been ex-
plored with these techniques, whereas other character-
isticsmay beunique to the lexicon.By starting outwith a
simple yet mathematically precise model, we can ex-
plore how well a few basic mechanisms can account for
the structure found in the mental lexicon and, perhaps,
shed some light on additional assumptions that may be
required to account for the structure found in themental
lexicon.

Method
To represent the adult lexicon, the phonological tran-

scriptions of approximately 20,000 words (N = 19,340)
were examined with Pajek, a program for large network
analysis and visualization (Batagelj&Mrvar, 1998). The
sample of words was obtained from the 1964 Merriam-
Webster Pocket Dictionary. Although the entries were
those from the Merriam-Webster Pocket Dictionary, the
pronunciations were derived, checked, and edited by
several researchers at the Massachusetts Institute of
Technology, includingDennisKlatt,DaveShipman,Meg
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Withgott, and Lori Lamel. Numerous studies have used
this same sample of words to derive estimates of neigh-
borhood density and phonotactic probability in English
(e.g., Luce & Pisoni, 1998; Nusbaum, Pisoni, & Davis,
1984; Vitevitch & Luce, 2004, 2005). Although the num-
ber of words in this sample is slightly larger than the
17,000 basewords that comprise the vocabulary of awell-
educatedadultnative speaker of English (Goulden,Nation,
& Read, 1990), it constitutes a reasonable approxima-
tion of the adult lexicon.

A node in the network corresponded to each of the
phonological representations from theMerriam-Webster
Pocket Dictionary. A link was placed between two nodes
if the twowordswere phonologically similar (cf. Batagelj
et al., 2002, in which a link connected two nodes if the
words were semantically related). Phonological similar-
itywas operationally defined by substituting, adding, or
deleting a single phoneme in a given word to form a
“phonological neighbor” (e.g., Greenberg & Jenkins, 1967;
Landauer & Streeter, 1973; Luce & Pisoni, 1998). For ex-
ample, the words hat, cut, cap, scat, and _at were con-
sidered phonologically similar to the word cat (cat has
other words as neighbors, but only a few were listed for
illustrative purposes). In the present network, links
would connect the nodes that corresponded to those words
to the word cat (and to each other as appropriate).

The same definition of phonological similarity has
been used in numerous psycholinguistic studies. The re-
sults of these studies have shown that the number of
phonological neighbors activated in the lexicon influences
various language processes: (a) the acquisition of sounds
in children (Gierut, Morrisette, & Champion, 1999);
(b) the acquisition of words in children (Charles-Luce &
Luce, 1990, 1995; Coady&Aslin, 2003; Dollaghan, 1994;
Storkel, 2004; Vicente, Castro, & Walley, 2003); (c) spoken
word recognition in young adults with no history of speech,
language, or hearing impairment in English and in
Spanish (Luce & Pisoni, 1998; Vitevitch, 2002b; Vitevitch
&Luce, 1998, 1999; Vitevitch&Rodriguez, 2005), in older
adults with no history of speech, language, or hearing
impairment (e.g., Sommers, 1996), and in postlingually
deafened adults who use a cochlear implant (Kaiser,
Kirk, Lachs, & Pisoni, 2003), and of accented speech
(Imai, Walley, & Flege, 2005); (d) spoken word production
in children who stutter (Arnold, Conture, & Ohde, 2005),
in young adults with fluent speech in English and in
Spanish (Munson & Solomon, 2004; Vitevitch, 1997,
2002a; Vitevitch & Stamer, 2006), in older adults with
fluent speech (Vitevitch & Sommers, 2003), and in in-
dividuals with aphasia (Gordon & Dell, 2001); and even
(e) reading by young adults with no history of speech,
language, or hearing impairment (Yates, Locker, &
Simpson, 2004).

In addition to being widely used (by many research-
ers and over several decades), work by Luce and Large

(2001; see also Cutler, Sebastian-Galles, Soler-Vilageliu,
& van Ooijen, 2000) provides some evidence for the psy-
chological validity of the one-phoneme metric as a mea-
sure of phonological similarity. In Experiment 2 of Luce
and Large (2001), participants heard a nonsense word,
such as /fin/, and were asked to produce the first real
word that came to mind that sounded like the non-
word stimulus item. Over 70% of the responses involved a
change of one phoneme in the nonword to form a real word
(e.g., mean, fun, feet). Eighteen percent of the responses
involved a two-phoneme change (either CV, C_C, or VC),
and the remaining 11% of the responses consisted of var-
ious types of changes involving the addition of a single
segment (or the addition of a syllable). These results sug-
gest that the operational definition of phonological sim-
ilarity used in the present analysis also captures, to a
large extent, the definition of phonological similarity that
speakers may have.

By employing the same psychologically valid metric
that has been used inmany psycholinguistic experiments
in the present graph theoretic analysis, psychologically
valid insight about themental lexiconmight be obtained.
Analyses of complex cognitive systems comprised of nodes
that are connected in a manner that is not motivated by
psycholinguistic research may be interesting mathemati-
cal exercises, but they are unlikely to provide significant
insight into questions of interest to language researchers.

The same techniques used by physicists and com-
puter scientists (e.g., Albert & Barabási, 2002) were used
in the current graph theoretic analysis to examine the
network structure of the phonological word-forms in the
mental lexicon. Different mechanisms lead to different
network structures, so identification of the structure of a
given network can provide some insight into the mecha-
nisms that might have influenced the development of the
observed network. In conventional graph theoretic anal-
yses, identification of the structure of a given network is
accomplished by comparing several measurements from
the graph of interest to the same measurements made in
a random network with the same number of nodes and
the same average number of connections per node as the
graph of interest. Random graphs consist of a network in
which links are randomly placed between nodes. They
have been widely studied and are mathematically well
understood (see Erdos & Rényi, 1960, for pioneering work
on random graphs) and, therefore, provide a good baseline
for comparisons. These conventional graph theoretic anal-
yses were supplemented in some cases by additional
comparisons to measurements obtained from a sample
of random graphs generated by the Pajek program.

The followingmeasurementsweremade in the present
graph theoretic analysis of the phonological word-forms
in the mental lexicon: average path length (ℓ), clustering
coefficient (C), degree distribution, and the extent of as-
sortative mixing by degree in the network. The average
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path length of a network refers to the average distance
between every node in the network and every other node
in the network (Watts & Strogatz, 1998). The clustering
coefficient characterizes the extent to which nodes con-
nected to another node are also connected to each other.
A clustering coefficient of 0 implies that none of the
neighbors of a node are connected to the other neighbors
of that node. A clustering coefficient of 1 implies that all
of the neighbors of a node are connected to each other.
Values between 0 and 1 imply that a number of neigh-
bors of a node are also neighbors of each other (Watts &
Strogatz, 1998).

The number of connections per node is also referred
to as the degree of the node, or k. The degree distribution
refers to the proportion of nodes [P(k)] that have a given
number of links. In a degree distribution that resembles
a normal bell-shaped distribution (i.e., a Poisson or Gauss-
ian distribution), a small number of nodes will have fewer
than the average number of connections per node, and a
small number of nodes will have more than the average
number of connections per node, but most nodes will have
the average number of connections per node. This type of
degree distribution is found in a random network. In a
degree distribution that resembles a power-law, many
nodes have a small degree (or a few connections), and a
few nodes have a large degree (or many connections).
This type of degree distribution has been found in graphs
of many real-world systems, including graphs depicting
connections amongWeb pages on the Internet (e.g., Albert
& Barabási, 2002); the mechanisms that lead to the de-
velopment of this special type of network structure will be
described later. Typically a logarithmic transformation is
applied to the degree distribution to reduce variability
in the data and aid in the identification of the network
structure.

Assortativemixing by degree refers to the probability
of a highly connected node being connected to other nodes
that are also highly connected (Newman, 2002; Newman
& Park, 2003). In other words, there is a positive corre-
lation between the degree of a node and the degree of its
neighbors. In a network with disassortative mixing by
degree, nodes that have many connections tend to be
connected to nodes with few connections, producing a
negative correlation between the degree of a node and the
degree of its neighbors. In a random network, where con-
nections are placed at random, the correlation between
thedegree of a nodeand the degree of its neighbors is zero
(Newman, 2002). The implications of these different
types of mixing by degree will be addressed later.

Results and Discussion
After connecting the nodes in the phonological net-

work using the similarity metric employed in previous

psycholinguistic studies, I calculated the average path
length and the clustering coefficient by using the Pajek
program. Note that the average path length, or distance
between any two nodes in a network, can be computed
only ona fully connectednetwork. In the case of themental
lexicon, there weremany “ lexical hermits” (n = 10,265), or
words that had no phonological neighbors, such as spinach
and obtuse. These hermits were not connected to the large
group of words that were highly connected to each other,
referred to as the largest component of the network. There
were also a number of words in the lexicon (n = 2,567)
that had a few neighbors, but neither the word nor the
neighbors were similar to a word in the largest com-
ponent of the network. These “lexical islands” contained
words like converse, convert, and converge that were con-
nected to each other but were not connected to any of the
words in the largest component. The calculations of
the network characteristics were, therefore, based on
the 6,508 words in the largest component of the pho-
nological lexicon.

Average Path Length (ℓ)
The average path length (ℓ) obtained from Pajek for

the phonological network was 6.05. That is, on average,
approximately six links had to be traversed to connect
any two nodes in the (largest component of the) network.
For example, to get from the word cat to the word dog,
one can traverse the links between the nodes correspond-
ing to the words bat, bag, and bog. The value obtained
from the phonological network was compared with the
average path length obtained from a comparably sized
and connected randomnetwork, ℓran. Because of the well-
studied nature of random graphs, the convention in graph
theoretic analyses (e.g., Albert & Barabási, 2002) is to es-
timate the value of ℓran using Equation 1:

ℓran � lnðnÞ
lnG k 9

; ð1Þ

wheren refers to the number of nodes in the network and
<k> refers to the mean degree. In the phonological net-
work, the largest component contained 6,508 nodes (n),
and themean degree (<k>) of the nodes in the largest con-
nected component was 9.105; therefore, ℓran = 3.975.

The computationally derived value of ℓran approxi-
mates the estimate of ℓran obtained from 100 Erdos-Rényi
random networks that were constructed in Pajek and
contained the same number of nodes (n = 6,508) and the
same average degree (<k> = 9.105) as the phonological
network. Themean value of the average path length (ℓ100)
from the sample of 100 random networks was 4.22 (SD =
0.01; 95% confidence interval = 4.20–4.24).

Although the average path length for the phonolog-
ical network (ℓ = 6.05) was somewhat larger than the
derived value of ℓran and the estimated value of ℓ100, the

Vitevitch: Graphic Theoretic Analysis of the Lexicon 411



conventions used in graph theoretic analyses would con-
sider these values comparable (Watts & Strogatz, 1998).
To further demonstrate the comparability of these val-
ues, compare them to the average path length of a sim-
ilarly sized ordered network ( ℓord). In an ordered network,
each node is linked to its nearest neighboring nodes. The
average path length of an ordered network can be es-
timated by using Equation 2:

ℓord � n

2 G k 9
; ð2Þ

where, again, n refers to the number of nodes in the
network, and <k> refers to the mean degree. Given n =
6,508 nodes, and <k> = 9.105, ℓord = 357.386. The value of
the average path length obtained from the phonological
network (ℓ) was much closer to and of the same order of
magnitude as the value obtained for ℓran compared with
the value obtained for ℓord, further suggesting that the av-
erage path length of the phonological network is compa-
rable to the average path length of a similarly sized
random network.

Clustering Coefficient
As is the convention in graph theoretic analyses, the

clustering coefficient (C) obtained from the (largest com-
ponent of the) phonological network was compared with
the value of the clustering coefficient that would be ob-
tained from a comparably sized and connected random
network (Cran). The value of the clustering coefficient (C)
obtained from Pajek for the largest component of the
phonological network was .126. That is, neighbors of a
given word have a tendency to also be neighbors of each
other (seeVitevitch, 2006, forwork on how the clustering
coefficient may influence spoken word recognition).

Because of the well-studied nature of random graphs,
the convention in graph theoretic analyses (e.g., Albert &
Barabási, 2002) is to estimate the value of Cran by using
Equation 3:

Cran � G k 9

n
; ð3Þ

where n refers to the number of nodes in the network, and
<k> refers to themean degree. Given n = 6,508 nodes, and
<k> = 9.105, the value of Cran obtained from Equation 3 is
.0014, which is about 90 times smaller than the value of
C obtained in the phonological network. The value of Cran

was also calculated from the same 100 Erdos-Rényi ran-
dom networks used in the analyses of the average path
length. The mean value of C from the 100 random net-
works (C100) was .00056 (SD = .00006; 95% confidence
interval = .00044–.00067). The value of C100 is similar in
magnitude to the derived value, Cran, but both values are
smaller in magnitude than the value of C obtained from

thephonological network. In otherwords, C>>Cran (Watts
& Strogatz, 1998).

Analyses of the average path length and the clus-
tering coefficient are often used to determine whether a
given network can be classified as a small-world net-
work. As described in Watts and Strogatz (1998; Watts,
1999), a small-world network has (a) an average path
length that is comparable to the average path length of a
random network, but (b) a clustering coefficient that is
much greater than the clustering coefficient of a random
network with the same number of nodes and the same
average degree. Small-world networks are so called be-
cause the pattern of connections that yields Character-
istics A andBmakes the network easy to traverse.1 That
is, the very large system has the appearance of being re-
latively small. The results of the present analyses sug-
gest that the phonological network has the characteristics
of a small-world network, a structure that is shared with
the semantic networks that have been previously investi-
gated (e.g., Albert & Barabási, 2002; Batagelj et al. 2002;
Ferrer i Cancho & Solé, 2001b) and with many other real-
world systems. To further examine the structure of the
phonological network, I performed additional analyses,
including an examination of the degree distribution and
the extent to which the phonological network exhibits
assortative mixing by degree.

Degree Distribution
The degree distribution of a graph provides additional

information about the structure of that system. To main-
tain consistency with traditional graph theoretic analyses,
as well as with the present analyses of the average path
length and the clustering coefficient, the degree distribu-
tion of the largest component of the phonological lexicon—
instead of the entire lexicon—was examined.

One type of network structure that has received
much attention is a scale-free network (Barabási&Albert,
1999). In a scale-free network,manynodes in thenetwork
have few links, but there are a few nodes with many
links. That is, a scale-free network can be identified by

1The “small-world” concept may be familiar to many because of the classic
work on the social “distance” between any two people in the United States
(Milgram, 1967). In this study, a randomly chosen person received the
name and address of a target individual and a set of instructions directing
them to deliver a packet to the target individual. If the randomly chosen
person knew the target individual, they could send the packet directly to the
target. If the randomly chosen person did not know the target individual,
they were to send the packet to someone they knew on a first name basis
who was more likely to know the target individual. The process of sending
the packet to someone that was more likely to know the target was repeated
until the target individual finally received the packet. Milgram found
that approximately six intermediate acquaintances were required to get
the packet from the randomly chosen person to the target individual. This
work contributed to the notions that we live in a “small world” and that
there are only “six degrees of separation” between any two people on the
planet (see also the work of Granovetter, 1973).

412 Journal of Speech, Language, and Hearing Research • Vol. 51 • 408–422 • April 2008



the presence of a power law function in the degree dis-
tribution. A power-law relationship appears as a straight
line in a log-log plot of the degree distribution (Albert &
Barabási, 2002). The degree exponent, g, or slope of the
line in the log-log plot of the degree distribution, in most
scale-free networks is 2 < g < 3; however, Montoya and
Solé (2002) found several examples of scale-free networks
that had values for gmuch less than 2 (oneas lowas 1.05).

An alternative method to determine whether a
network is a scale-free network is to plot the cumulative
degree distribution in a log-log scale (Newman, 2006) or
the cumulative degree distribution in a linear-log scale
(Amaral, Scala, Barthélémy, & Stanley, 2000). In a log-
log scale, the cumulative degree distribution would again
show a straight line if a power-law function existed, but
this time with a slope of g – 1 = 1.5 (Newman, 2006). In a
linear-log plot, a power-law distributionwould be evident
if the line fitting the data had an upward bend to it,
whereas a straight line would indicate an exponential
relationship in the degree distribution instead of a power-
law relationship (Amaral et al., 2000). Both the degree dis-
tribution and the cumulative degree distribution will be
used to examine the structure of thephonological network.

Figure 1 shows the degree distribution for the 6,508
connected word-forms in the largest component of the
phonological lexicon on a log-log scale. The best fitting
power-law and exponential lines were computed over all
of the data points and are also plotted in the figure. The
root-mean-square error (RMSE) measure of fit shows that
the observed data fit an exponential distribution (Y =
.141 * e–.123*X, RMSE = .005) better than a power-law

distribution (Y = .672 * X–1.489, RMSE = .089). Given the
poor fit of the power-law function, the degree exponent,
g, was not calculated.

Figure 2 shows the cumulative degree distribution
of the phonological network in a log-log scale (Newman,
2006),with thebest fittingpower-law (Y=21.524*X–2.13)
and exponential (Y = 2.807 * e–.181*X) lines also plotted in
the figure. Figure 3 shows the cumulative degree distri-
bution of the phonological network in a linear-log scale
(Amaral et al., 2000), with the best fitting power-law and
exponential lines also plotted in the figure. The RMSE
measure of fit shows that the observed data again fit an
exponential distribution (RMSE = .335) better than a
power-law distribution (RMSE = 3.198). Given the poor
fit of the power-law function, the degree exponent, g, was
not calculated. Both methods of evaluation—degree dis-
tribution and cumulative degree distribution—show that
the degree distribution of the phonological network is
better characterized as an exponential function than as a
power-law function.

Assortative Mixing
A final analysis was performed to determine

whether the phonological network showed assortative
mixing ordisassortativemixingbydegree (Newman, 2002;
Newman & Park, 2003). In a network with assortative
mixing by degree, the nodes that havemany connections
tend to be connected to other nodes that have many con-
nections. In other words, there is a positive correlation
between the degree of a node and the degree of its neigh-
bors. In a network with disassortative mixing by degree,

Figure 1. The degree distribution for the 6,508 word-forms in the
largest fully connected component of the phonological network in
a log-log plot (the solid squares). The best fitting power-law (straight
line) and exponential functions (curved line) are also displayed
for comparison.

Figure 2. The cumulative degree distribution for the 6,508 word-
forms in the largest fully connected component of the phonological
network in a log-log plot (the solid diamonds). The best fitting power-
law (straight line) and exponential (curved line) functions are also
displayed for comparison.
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nodes that have many connections tend to be connected
to other nodes with few connections—a negative corre-
lation between the degree of a node and the degree of its
neighbors. Examination of the type of mixing by degree
that occurs in a network is of interest because Newman
(2002) discussed different processing implications for
networks with assortative and disassortative mixing by
degree (a point that will be discussed later in the context
of the phonological network).

The number of connections, or degree, of each of the
6,508 nodes in the fully connected component was cor-
relatedwith the degree of each of its neighbors. The result-
ing Pearson’s r (29,613) = .62, p < .0001, shows a positive
correlation. That is, nodes with many connections tend
to be connected to nodes that also havemany connections,
whereas nodes with few connections tend to be connected
to nodes that also have few connections. Said another
way, words with dense phonological neighborhoods tend
to have neighbors that also have dense phonological neigh-
borhoods, whereas words with sparse phonological neigh-
borhoods tend to have neighbors that also have sparse
phonological neighborhoods; therefore, the phonological
network exhibits assortative mixing by degree.

What Advantages Does This Structure
Afford the Mental Lexicon?

The analyses of the average path length and the
clustering coefficient suggested that the phonological net-
work had the characteristics of a small-world network
(Watts & Strogatz, 1998). Although such networksmay be
very large and sparsely connected, processing on networks

with a small-world structure occurs rapidly, accurately,
and robustly. Given the small-world characteristics ob-
served in the network of phonological word-forms, it is
perhaps not a coincidence that language processes are
also rapid, accurate, and robust.

Additional analyses showed that the network of
phonological word-forms exhibited assortative mixing
by degree. Newman (2002) examined several real-world
networks and discussed the implications that assorta-
tive and disassortative mixing by degree might have on
“processing” in those systems. The assortative mixing
observed in the structure of the phonological network
may have similar implications for the process of re-
trieving word-forms from the mental lexicon. The fol-
lowing discussion, however, should not be viewed as a
proposal for a model of lexical processing. Rather, it is
simply an exploration of how the structure of the pho-
nological network might affect its function (Strogatz,
2001; Ward, 2002).

To examine how the structure of the phonological
word-forms might influence lexical processing, consider
howacommonmetaphor for lexical processing—activation
from acoustic–phonetic input spreading to phonologi-
cally related words—might be affected by a network
exhibiting disassortative versus assortative mixing by
degree. In a network with disassortative mixing by de-
gree, the distribution of highly connected nodes through-
out the network would result in activation spreading
among many, if not all, of the word-forms in the mental
lexicon. A large number of potential lexical candidates
would then have to be rejected during each attempt at
lexical retrieval, perhaps making the process of word
recognition slow, resource intensive, and—especially
in listening conditions that are less than ideal—very
laborious.

However, in a network with assortative mixing by
degree, highly connected nodes tend to be clustered to-
gether, thereby restricting the spread of activation to a
more circumscribed region of the network (formingwhat
Newman, 2002, referred to as a “reservoir” in the context
of disease transmission). In this case, activation from
acoustic–phonetic input would spread among a smaller
set of potential candidates, even in the case of words that
have many phonological neighbors (see Norris, 1994, for
a processing model instead of a structural model that
leads to a “short list” of lexical candidates). The spread of
activation to a more restricted set of candidates means
that not every word in the lexicon would have to be con-
sidered and rejected as a potential lexical candidate as it
would in a networkwith disassortativemixing, ensuring
rapid, seemingly automatic retrieval of the correct lex-
ical candidate from the lexicon, even in less than ideal
listening conditions. The assortative mixing found in
the phonological network also suggests that models of
spokenword retrievalmay not have to postulate a special

Figure 3. The cumulative degree distribution for the 6,508 word-
forms in the largest fully connected component of the phonological
network in a linear-log plot (the solid diamonds). The best fitting
power-law (upward curving line) and exponential (straight line)
functions are also displayed for comparison.
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ad hoc mechanism that prevents the entire lexicon from
being activated whenever any acoustic-phonetic input
is received, as the very structure of the phonological net-
work may prevent this from happening.

Suppose now that the correct word-form in the lex-
icon does not receive enough activation to cross the thresh-
old necessary for successful lexical retrieval. That is, the
node is (temporarily) removed from the network.What are
the implications for processing when a node is removed
from a system that exhibits disassortative or assortative
mixing by degree? In the case of the mental lexicon, how
might the structure of the system influence recovery from
afailedattemptat retrievingaphonologicalword-form? Ina
network with disassortative mixing by degree, the removal
of one of the highly connected nodes that are distributed
throughout the network is likely to result in the fracturing
of the fully connected network into smaller components.
If the mental lexicon were structured in this way, the
reduced connectivity in the system caused by the re-
moval of that nodemaymake it difficult for activation to
spread to another lexical candidate, resulting in cata-
strophic failure of the lexical retrieval process. In other
words, if the correct phonological word-form is not re-
trieved, then nothing is retrieved.

In a network with assortative mixing by degree, the
removal of one of the highly connected nodes from the
cluster of highly connected nodes does little to break up
the network, as the numerous “redundant” pathways
found in the cluster of highly connected nodes maintain
the connectivity of the network. The alternative pathways
enable activation to spread to another (albeit, incorrect)
candidate. Thus, if the correctword-form isnot retrieved in
a network with assortative mixing, catastrophic failure
does not occur. Rather, the system experiences graceful
degradation (McClelland, Rumelhart, & Hinton, 1986)
and finds another item that best matches the input. Evi-
dence from studies of speech perception errors (Vitevitch,
2002b) and speech production errors (e.g., Vitevitch, 1997)
suggests that catastrophic failure is not likely to occur
when the lexical retrieval process fails. Instead, the sys-
tem experiences graceful degradation, retrieving at least
partial information about a word (e.g., interlopers, or the
first letter or syllable of a word that is on the “tip of the
tongue”; Vitevitch & Sommers, 2003). The graceful deg-
radation that occurs during lexical retrieval failures may
inpart be due to the assortativemixingbydegree found in
the structure of the phonological network.

Furthermore,Newman (2002) found that 5 to 10 times
more nodes that were highly connected had to be re-
moved from a network with assortative mixing than
fromanetworkwith disassortativemixing to destroy the
connectivity of the network. This finding suggests that
the assortative mixing found in the phonological net-
work may also contribute to the robustness of language

processing in the face of more permanent damage to the
systemstemming fromstroke or other injury to language-
relatedareas of thebrain.Only in the case ofmassive dam-
age to the system,when a large number of highly connected
nodes in the system are removed, is the connectivity of
the network likely to be compromised, perhaps leading
to catastrophic processing failures. In the case of lexical
processing, conditions of catastrophic failure, such as pure
word deafness, may be the result of massive damage to
the lexicon that removes a large number of highly con-
nected nodes from the system.

Although the present graph theoretic analyses sim-
ply examined the structure that was observed among
phonological word-forms in the mental lexicon, the na-
ture of that organization has important implications for
the type of processing carried out in that system (Strogatz,
2001;Ward, 2002).Thepresentdiscussionhighlightedhow
the small-world nature and the assortative mixing by de-
gree found in the phonological network might, in part,
account for the speed, accuracy, and robustness of lexical
processing. The following discussion considers themech-
anisms that might lead to certain network structures
and explores the implications of those mechanisms for
the acquisition of phonological word-forms.

What Leads to This Structure
in the Mental Lexicon?

Certainmechanisms lead to the formation of certain
types of network structures. Therefore, the analyses of
the degree distribution of a network can be used to help
identify the structure of a given network and to shed
some light on the mechanisms that may have led to its
formation. Themechanisms that lead to the formation of
certain network structures might be viewed as mecha-
nisms that operate on a longer time scale, akin to evolu-
tion, or asmechanisms that operate on shorter time scales,
akin to development or learning. Indeed, some researchers
have argued that evolution, development, and learning
might differ in the time scales in which they operate, but
they are all subject to a similar underlying mechanism
(Dickins & Levy, 2001). Given the possibility that a sim-
ilar mechanism might govern evolution, development,
and learning, the following discussion will examine the
mechanisms that might lead to the formation of certain
network structures and will explore the implications of
those mechanisms for word learning.

Much attention—even in the popular press (Barabási,
2002)—has focused on the apparent ubiquity of networks
with a scale-free structure. The interest in scale-free net-
works might, in part, be related to the power-law rela-
tionship found in the degree distribution, as power-law
distributions have also been associated with the phenom-
enon of self-organized criticality (Bak, Tang,&Wiesenfeld,
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1988). Barabási and Albert (1999; Barabási, Albert, &
Jeong, 1999) suggested that twomechanisms lead to the
emergence of scale-free networks: growth and preferential
attachment.Growth refers to the addition of new nodes to
the network over time. Preferential attachment is a con-
straint that makes it more likely for new nodes being
added to the system to connect to nodes that are already
highly connected. Barabási and Albert (1999; Barabási
et al., 1999) found that both growth and preferential at-
tachmentwere necessary to create the power-law degree
distribution in scale-free networks (however, see Ferrer
i Cancho & Solé, 2001a, for evidence that a process that
optimizes the distance between nodes and the number
of links per node may also lead to a power-law degree
distribution).

In the case of phonological word forms in themental
lexicon, there is some evidence for growth and preferen-
tial attachment. First, consider that the mental lexicon
grows over time. Although learning new word-forms is
something that is typically associated with and primar-
ily studied in children (e.g., Storkel, 2001, 2003), it is not
controversial to state that adults also learn new words.
In other words, the mental lexicon continues to grow
over time.

Now consider preferential attachment, or the ten-
dency for a newnode to attach to a node that is connected
to many rather than to few nodes in the system. In the
case of themental lexicon, a novel word-form that is pho-
nologically similar tomanyknownwords (i.e., with adense
phonological neighborhood) should be acquiredmore easily
than a novel word-form that is phonologically similar to
few knownwords (i.e., with a sparse phonological neigh-
borhood). Indeed, Storkel (2001, 2003; see also Beckman
& Edwards, 2000; Gathercole, Hitch, Service, & Martin,
1997; Storkel & Morrisette, 2002) found that preschool-
age children learned novelwords that had common sound
sequences (which are correlated with word-forms with
dense phonological neighborhoods; Vitevitch, Luce, Pisoni,
&Auer, 1999)more rapidly thannovelwords that had rare
sound sequences (i.e., sparse neighborhoods). Similarly,
Storkel, Armbrüster, and Hogan (2006) found that
college-age adults learned novel words with dense neigh-
borhoods more rapidly than novel words that had sparse
neighborhoods, further suggesting that a mechanism like
preferential attachment may influence the growth of the
mental lexicon.

Furthermore, work by Page (2000; see also Grossberg,
1972) illustrates how a localist neural network with a
competitive learning algorithm (i.e., not the type of net-
work examined in the present investigation) might ex-
hibit behavior that resembles growth via preferential
attachment. In a localist neural network, an individual
node represents a given concept or, in the case of the pho-
nological lexicon, a word-form. When a novel word-form

is presented to the localist network, several uncommit-
ted nodes become partially activated by the input and
compete with each other to become the node that will be
committed to representing that input pattern in the
future. Each node will adapt its weights to better match
the input pattern. Eventually, one node will match the
input pattern better than the other competing nodes and
will become committed to representing that word. The
“losing” nodes remain uncommitted (i.e., they do not
represent a known word), but because of the previous
competition, their weights are in an excellent position to
represent a new input pattern that is similar to the
previously learned input pattern. Such amechanismnot
only accounts for the advantage found in word learning
for similar sounding words (i.e., words with dense neigh-
borhoods) overuniquewords (i.e.,wordswith sparseneigh-
borhoods) but also illustrates how a connectionist model
could exhibit behavior that resembles preferential
attachment.

Given the evidence for growth and preferential at-
tachment in the mental lexicon, it is somewhat surpris-
ing that a power-law relationship was not observed in
the analysis of the degree distribution of phonologically
similar words in themental lexicon (cf. Albert &Barabási,
2002; Batagelj et al., 2002; Ferrer i Cancho & Solé, 2001b;
Motter et al., 2002;Steyvers&Tenenbaum,2005). Instead,
an exponential function provided a better fit to the degree
distribution of the phonological network.

Alsonote thatNewman (2002) found that theBarabási
and Albert (1999) scale-free network had neither assorta-
tive nor disassortative mixing by degree; rather, the
correlation of the degrees of connected nodes, perhaps
counterintuitively, was 0. Recall that assortative mixing
by degreewas observed in the phonological network. The
exponential degree distribution and the presence of
assortative mixing by degree suggest that it is unlikely
that the phonological network is a scale-free network
like those examined byBarabási andAlbert (1999).What
mechanisms might lead to the network characteristics
observed in the phonological network: a degree distribu-
tion that does not follow a power-law and assortative
mixing by degree?

In addition to showing that growth and preferential
attachment lead to a scale-free network with a power-
law degree distribution, Barabási and Albert (1999) also
demonstrated that a system that does not grow or that
grows without preferential attachment is not likely to
exhibit a power-law degree distribution. Recall, how-
ever, that themental lexicon does grow over time and does
seem to be influenced by a mechanism that resembles
preferential attachment. Perhaps additional constraints
on the formation of the network—and by implication, on
the acquisition of novel words—led to the characteristics
observed in the phonological network.
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Amaral et al. (2000) found that if there is a cost as-
sociatedwith the attachment of a newnode (i.e., the node
may be able to accommodate only a fixed number of
links), then a power-law degree distribution, like that in
the scale-free model proposed by Barabási and Albert
(1999), is not likely to be observed. In the case of pho-
nological word-forms, restrictions onword length, on the
sounds used in that language (i.e., phonemic inventory),
and on the sequencing of those sounds in a word (i.e.,
phonotactic constraints) may limit the number of new
nodes that can link to an already existing node. The costs
associated with adding a new link in the phonological
lexicon may, in part, account for the failure to find a
degree distribution that follows a power law (see also
Krapivsky, Redner, & Leyvraz, 2000, for the influence of
nonlinear preferential attachment on the degree distri-
bution). Although additional constraints on preferential
attachment may produce degree distributions that do
not follow a power law (e.g., an exponential degree dis-
tribution), it is not clear whether they will also lead to
assortativemixing by degree or to the presence of lexical
hermits—nodes that were not connected to any other
node in the system—aswas observed in the phonological
network.

One type of growing network that does exhibit all of
these characteristics—exponential degree distribution,
assortative mixing by degree, and the presence of iso-
lated nodes and islands—is the randomly grown net-
workexaminedbyCallaway,Hopcroft,Kleinberg,Newman,
and Strogatz (2001). These characteristics emerged in
the growing network examined by Callaway et al. be-
cause of two stochastic processes: (a) new connections
are placed between randomly chosen pairs of nodes, and
(b) new nodes that are added to the system are not re-
quired to attach to a preexisting node. Do such processes
also influence theacquisition of phonologicalword-forms?

Consider the first stochastic process described by
Callawayet al. (2001), inwhichnewconnectionsareplaced
between randomly chosen pairs of nodes in the network. In
the phonological network, there is some probability that
a new node might link to an already existing node in the
network. In terms of the mental lexicon, a new word
might be phonologically similar to an already known
word. Callaway et al. also noted that older nodes, or those
items that had been in the network for some time, tended
to have a higher degree, or more connections than more
recently added nodes. That is, it is also likely that the
already existing node will have a high degree, or in terms
of the mental lexicon, it is likely that the already known
word will have a dense phonological neighborhood. Con-
sistentwith this prediction, Storkel (2004) found a positive
correlation between age of acquisition and neighborhood
density, such that words learned early in life tended to
sound similar to many words (i.e., they had a higher de-
gree) than a word learned later in life. The resemblance

between the networkmodel examined by Callaway et al.
and the mental lexicon regarding the relationship be-
tween age of acquisition and neighborhood density is
quite striking.

It is important to note, however, that the relation-
ship observed by Storkel (2004) is correlational in nature
and, therefore, could be the result of several possibilities.
For example—as implied by the first stochastic process
in thenetworkmodel examinedbyCallawayet al. (2001)—
the first words that are learned may lay a lexical foun-
dation that makes it more likely that some words (i.e.,
those that are similar to known words) but not others
(i.e., those that are not similar to known words) will be
acquired in the future. Another possibility—as the results
of laboratory-based word-learning experiments by Storkel
andothersmight suggest (Storkel 2001, 2003;Storkel et al.
2006; see also Beckman & Edwards, 2000; Gathercole
et al., 1997)—is that words with dense neighborhoods
are easier to learn and are therefore acquired earlier in
life thanwordswith sparse neighborhoods. Alternatively,
a third variable may be responsible for the apparent re-
lationship between age of acquisition and neighborhood
density. In the case of the mental lexicon, the frequency
with which a word occurs in the language is correlated
with both age of acquisition and neighborhood density.
Finally, a combination of some or all of these possibilities
might be at work. The exact nature of the relationship
between age of acquisition and neighborhood density is
an interesting question that cannot be definitively an-
swered by the present analyses and must, therefore, be
left for future research to address.

Consider further the first stochastic process described
by Callaway et al. (2001): New connections are placed
between randomly chosen pairs of nodes in the network.
This stochastic process also implies that there is some
probability that a link may be placed between two pre-
existing nodes in the network. That is, two knownwords
that were not previously identified as being phonolog-
ically similarmay, at a subsequent point in time, become
phonologically similar. How can twowords that were not
previously phonologically similar become phonologically
similar at a later point in time? Perhaps the lexical re-
structuring hypothesis proposed by Metsala and Walley
(1998) might account for the later emergence of links
between nodes in the lexicon. Metsala and Walley sug-
gested that continued vocabulary growth leads to the
internal restructuring of lexical representations. That
is, lexical representations gradually become more de-
tailed throughout early and middle childhood. Such a
process may lead to changes in phonological similarity
between previously unrelated items andmay account for
the subsequent placement of a link between two pre-
existing nodes.

To illustrate how the lexical restructuring hypoth-
esis might account for the subsequent placement of a
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link between two preexisting nodes, imagine that the
lexicon of a child at an early point in time consisted only
of the words cat and dog. With such a small vocabulary,
very abstract representations of those word-forms that
lack much detail might be sufficient to distinguish be-
tween those two word-forms. Abstract representations
for cat and dogmight consist of the first segment in each
word and some general information indicating that (per-
haps, a certain number of ) additional speech sounds fol-
low; suppose something like /k– / and /d– /.

If a new node with the abstract representation /d– /,
corresponding to the recently learned word doll, was
added to the network, one would no longer be able to dis-
tinguish between the word-forms for dog and doll. More
detailwouldneed tobeadded to thephonological represen-
tations fordog anddoll (perhaps /d-[stop]/ and /d-[glide]/)
in order to distinguish between those similar words. The
subsequent addition of this more detailed information
might result in a link being placed between these two
preexisting yet similar nodes at some later point in time.

Although there is some evidence to support the lex-
ical restructuring hypothesis (e.g., Edwards, Beckman,
& Munson, 2004; Munson, Swenson, & Manthei, 2005;
Storkel, 2002;Walley, 1993), it has been articulated only
in very general terms and is not without its critics (e.g.,
Swingley, 2003; Swingley & Aslin, 2002). Admittedly,
there are still some open questions regarding the lexical
restructuring hypothesis, including whether the addi-
tionof moredetailed information to lexical representations
may result in two words that were previously considered
similar to each other to no longer be phonological neigh-
bors. This possibility might correspond to the removal of a
link between two nodes in a network. However, such a
mechanism is not present in the model proposed by
Callaway et al. (2001). Despite the lack of specific details
in the lexical restructuringhypothesis, suchamechanism
makes it at least plausible that the simple stochastic pro-
cess proposed by Callaway et al. not only contributes to
the structure observed in the randomly grown network
that they examined, butmay also contribute to the struc-
ture observed in the phonological network.

Considernow the second stochastic process described
by Callaway et al. (2001): New nodes added to the system
are not required to attach to a preexisting node in the
network. Accidental gaps and various restrictions (e.g.,
on word length, on the phonemic inventory, or on pho-
notactic sequencing) have resulted in numerous word-
forms that are not phonologically related to any other
extant word. The process of adding new nodes to the
systemwithout requiring them to attach to a preexisting
node in the network can account for the presence of these
lexical hermits in the phonological network. This would
not be true in the scale-free network model proposed by
Barabási and Albert (1999), in which a new node has to

also connect to a preexisting node. In thatmodel, there is
no way to account for the presence of lexical hermits as
observed in the phonological network. Thus, this simple
stochastic process not only contributes to the structure
observed in the randomly grown network examined by
Callaway et al., but may also contribute to the structure
observed in the phonological network.

It is quite striking that these two simple stochastic
processes can account for several nontrivial results rela-
ted to the acquisition and subsequent organization of
phonologicalword-forms in themental lexicon. Thepres-
ent analyses certainly do not prove that (only) these two
stochastic processes caused the structure observed in
the phonological network, nor do they account for all of
the patterns that were observed, but they do suggest that
a long list of complicated and detailed constraints that
capture the microscopic details of language may not be
necessary to produce the structure observed in the pho-
nological network. Future simulations and graph theo-
retic analyseswill further investigate whichmechanisms
led to the structure that was observed in the phonological
network examined here.

General Discussion
Although graph theoretic concepts have been used

for some time to study social interactions and social net-
works (e.g., Kochen, 1989; Wasserman & Faust, 1994;
Wellman & Wortley, 1990), their use has been conspic-
uously absent from studies of cognitive processing (see
Sporns, Chialvo, Kaiser, & Hilgetag, 2004, for the appli-
cation of graph theory to neuroscience). The present
work (see also Steyvers & Tenenbaum, 2005) suggests
that these techniques can also be used to increase our
understanding of complex cognitive systems, such as the
mental lexicon. Speech-language pathology, psycholin-
guistics, and cognitive science more generally might ob-
tain great insights by viewing complex cognitive systems
from this alternative perspective.

Alternative perspectives, such as connectionist
modeling, have, in the past, reshaped and advanced
our understanding of various psychological processes—
including the influence of evolution, development, and
learning on those processes—in significant ways (e.g.,
Elman, Bates, Johnson, Karmiloff-Smith, Parisi, &
Plunkett, 1996). Looking at the mental lexicon in graph
theoretic terms may have similar consequences, as it
places the lexicon, and other complex psychological sys-
tems, in a broader context and allows us to see that
cognitive systems may be governed by the same under-
lying principles—such as those that led to small-world
structures—that govern other complex systems found
in the world. If complex cognitive systems are subject to
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the same constraints as other real-world systems, then
ad hoc specific mechanismsmay not be needed to account
for processes like word learning and word retrieval (e.g.,
Markson & Bloom, 1997).

Callaway et al. (2001) stated, “We do not claim that
ourmodel is an accurate reflection of any particular real-
world system, but we find that studying a model that
exhibits network growth in the absence of other com-
plicating features leads to several useful insights” (p. 1).
The present analyses employed simple models, like
those explored by Callaway et al. These networks with
uncomplicated features indeed provided several useful
insights regarding lexical access and acquisition. Spe-
cifically, a few simple stochastic processes may lead to a
structure that significantly influences the learning and
retrieval of word-forms in the mental lexicon.

Although the quantitative fit between the phono-
logical network and the graph theoretic models was not
perfect (e.g., the faster-than-exponential decay inFigure3),
the qualitative similarity of the phonological network, a
real-world cognitive system, to the model examined by
Callaway et al. (2001)may offer a unique opportunity for
each field to learn fromand contribute to thedevelopment
of the other. Cross-disciplinary analyses of the mental
lexiconmight lead to the discovery of various parameters
that influence the development of network structures in
many real-world systems. The study of the structure ob-
served in the mental lexicon might also lead to the devel-
opment of new techniques to better classify different
types ofnetworks. Indeed, several experts innetworkanal-
ysis recently discussed 10 topics that future research
should focus on (“VirtualRoundTable,”2004). First among
those research topicswas the following question: Are there
formal ways of classifying the structure of different grow-
ingmodels? The present analyses have revealed a number
of puzzles that might stimulate such cross-disciplinary
investigation.

One puzzle that might capture the attention of re-
searchers relates to the amount of assortative mixing by
degree that was observed in the phonological network.
Recall that the analysis of assortative mixing by degree
in the phonological network found a correlation of .62.
The value of the correlation coefficient obtained in the
present analyses, however, is much greater than that
reported by Newman (2002) for other real-world net-
works (a maximum of .363 for a coauthorship network of
physicists) and is greater than the value predicted by the
randomly grown network examined by Callaway et al.
(2001; less than .4). It is not clear that any of the network
models that were examined in the present analysis can
account in any way for this observation.

What could lead to a greater amount of assortative
mixing by degree? Perhaps somewhat counterintui-
tively, such a situationmight emerge in the phonological

network because of numerous restrictions or constraints
on word formation. With some constraints on what con-
stitutes a legal word in a given language, one might
imagine that maximally dissimilar word-forms would
populate the lexicon to limit confusability among the
items and to facilitate the transmission of information.
With many more constraints, however, the lexicon that
emerges might instead resemble a group of individuals
wearing a uniform of some sort. That is, the options for
what shirt and what pants to wear (or what segments
can co-occur) are so limited that everyone ends up look-
ing very similar, like students in a Catholic school, em-
ployees in a fast food restaurant, soldiers in themilitary, or
words that are morphologically related to each other.

In addition to leading to greater assortative mixing
by degree, additional constraints onword formation, such
as those imposed by morphology, might also underlie
another anomaly that was observed in the phonological
network, namely, the existence of a rather large island of
relatedword-forms. Recall that the phonological network
consisted of many words in a large interconnected com-
ponent, many lexical hermits, and a number of islands
containing several words that were related to each other
but not to anything else. Although the processes proposed
by Callaway et al. (2001) predict the existence of hermits
and of islands of various sizes, additional analyses (that
were not reported here) suggest that it is not very likely
that an island containing over 50 nodes, as was observed
in the phonological network, should exist in a network of
this size and connectivity. (Because approximately two
thirds of the words in this group contain the morpholog-
ically relevant sequence of segments /shIn/, suchas faction,
fiction,and fission, I facetiously refer to this group of words
as the island of the “shunned.”) Further research is
required to determine how to best represent additional
constraints on word formation, like those imposed by
morphology, inanetworkmodel, and todeterminewhether
analogous constraints also influence other real-world
systems.

Although there is much to be gained from such op-
portunities for interdisciplinary research, future research
focusing on the mental lexicon may also benefit from the
application of graph theoretical techniques. Advances in
our understanding of language processing and language-
relateddisordersmight bemadebyexamining the lexicon
of individual children, instead of an “average” lexicon as
was done in the present analyses, to determine whether
language acquisition is proceeding along a typical trajec-
tory. One might also employ graph theoretic approaches
to help identify certain words in the vocabulary of an in-
dividual child thatmight facilitate the diffusion of sound
change throughout the lexicon (e.g., Gierut, 2001).

Future graph theoretic analyses of the lexicon could
alsousemore complexgraphs to examine other structural
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characteristics thatmight influence language processing.
For example, a network with weighted links might be
used to examine how overlapping words like cap and
captain might influence lexical retrieval (however, see
Newman, Sawusch,&Luce, 2005). Alternatively, a graph
that allows multiplexity (two or more links of different
types might exist between nodes; see Koehly & Pattison,
2005) could beused to examinehowsemantic information
might interact with phonological information during lex-
ical processing. The present analysis shows some of the
potential that graph theory and the new science of net-
works (Watts, 2004) hold for understanding cognitive
processing. In short, graph theory offers a new and use-
ful set of mathematically rigorous tools to increase our
understanding of language-related processes and other
complex cognitive systems.
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