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Abstract
It has been hypothesized that known words in the lexicon strengthen newly formed 
representations of novel words, resulting in words with dense neighborhoods being learned 
more quickly than words with sparse neighborhoods. Tests of this hypothesis in a connectionist 
network showed that words with dense neighborhoods were learned better than words with 
sparse neighborhoods when the network was exposed to the words all at once (Experiment 1), 
or gradually over time, like human word-learners (Experiment 2). This pattern was also observed 
despite variation in the availability of processing resources in the networks (Experiment 3). A 
learning advantage for words with sparse neighborhoods was observed only when the network 
was initially exposed to words with sparse neighborhoods and exposed to dense neighborhoods 
later in training (Experiment 4). The benefits of computational experiments for increasing our 
understanding of language processes and for the treatment of language processing disorders 
are discussed.
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1 Introduction

It is generally accepted that representations of phonological segments, lexical word forms, and 
semantic information (among other types of representations) are involved in the production and 
recognition of spoken words (e.g., Dell, Schwartz, Martin, Saffran, & Gagnon, 1997; Vitevitch & 
Luce, 2005). These representations also play a role, and indeed must be formed, in the acquisition 
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of new words (Storkel & Morrisette, 2002). When one encounters a novel word, one must activate 
the existing representations of phonological segments until a new lexical representation can be 
created and associated with the appropriate meaning. Much research has examined the biases that 
influence how children learn the meanings of new words (e.g., Gershkoff-Stowe & Smith, 2004). 
The present investigation, however, focused on another part of the word-learning process, namely 
the formation of lexical representations, or phonological word forms, and examined how existing 
lexical representations influence the acquisition of novel word forms.

Infants (Hollich, Jusczyk, & Luce, 2002), toddlers (Storkel, 2009), preschool children (Storkel, 
2001, 2003), and college-age adults (Storkel, Armbruster, & Hogan, 2006; see also Stamer &  
Vitevitch, 2012) learn novel words that sound similar to many known words (i.e., the novel word 
has a dense neighborhood) more readily than novel words that sound similar to few known words 
(i.e., the novel word has a sparse neighborhood).1 This influence of existing words on the acquisi-
tion of novel words has been found when the novel words are nouns (Storkel, 2001), verbs (Stor-
kel, 2003), or homonyms (Storkel & Maekawa, 2005), and has also been found in naturalistic 
contexts, in addition to laboratory-based experiments (Storkel, 2004, 2009).

To account for the influence of existing lexical representations on the acquisition of a novel 
word form, Storkel et al. (2006) suggested that the partial phonological overlap that exists between 
the novel word and the representations of known words in the lexicon strengthens the newly formed 
lexical representation of a novel word (see also Jusczyk, Luce, & Charles-Luce, 1994). A newly 
formed representation that resembles many known words in the lexicon will be strengthened to a 
greater extent than a newly formed representation that resembles few known words in the lexicon, 
hence the advantage for learning novel words with dense compared to sparse neighborhoods.

This account of how existing lexical knowledge affects the process of word learning is appeal-
ing for several reasons, including that it is intuitive and simple to understand. However, it lacks the 
necessary detail to make precise predictions about how the process of word learning might be 
affected by differences among word-learners or by differences in the word-learning environment. 
To better explore these questions, we developed a simple computer model (using connectionist 
principles) that captured the essence of the account proffered by Storkel et al. (2006).

Although a number of computational models of the process of “word learning” in children have 
been previously developed, many have focused on the acquisition of conceptual information, or 
the acquisition of the association between conceptual information and the lexical word form rather 
than focus solely on how lexical knowledge influences the acquisition of word forms, as in the 
present case (e.g., Cottrell & Plunkett, 1994; Gasser & Smith, 1998; Howell, Jankowicz, & Becker, 
2005; Plunkett, Sinha, Moller, & Strandsby, 1992; Yu, 2005). Models that have investigated the 
acquisition of word forms have not accounted for the influence of neighborhood density on word 
learning (e.g., Li, Zhao, & MacWhinney, 2007; Plunkett & Marchman, 1996; Regier, 2005; Sibley, 
Kello, Plaut, & Elman, 2008). Rather than modify an existing model, we found it more advanta-
geous to build our own computational model, allowing us to focus solely on the influence of neigh-
borhood density on word learning (N.B., we do not deny that syntactic, semantic, and other factors 
influence word learning; we simply wished to focus on this one aspect of word learning, specifi-
cally, how the number of existing, similar-sounding word forms influences the acquisition of novel 
word forms).

In the present studies we used a multi-layered, auto-associative network with distributed 
representations, trained with the back-propagation learning algorithm to test how existing 
words in the lexicon influence the acquisition of novel words. A multi-layered network has 
several layers of processing units—input, hidden, and output units—whereas a single-layered 
network lacks hidden units. An associative network must learn that two patterns are related to 
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each other. When the network is presented with one pattern, the network must compute the 
other associated pattern. In the case of an auto-associative network, the pattern that is com-
puted is identical to the one that is initially presented to the model (e.g., produce X when given 
X). In contrast, a hetero-associative network must learn to associate two different patterns (e.g., 
produce Y when given X). Both types of associative networks are ideally suited for the efficient 
storage of patterns that must be produced at some later point in time (Rumelhart, McClelland, 
& the PDP Research Group, 1986).

Although it might be tempting to view the auto-associative network as an analogue of various 
tasks commonly used in psycholinguistic experiments of word learning—such as the non-word 
repetition task in which a child hears a novel word form and must repeat it aloud as quickly and 
as accurately as possible (e.g., Gathercole, 2006)—it is important to note that we did not create 
a computer simulation of human performance in the non-word repetition (or any other) task. 
Rather, we are using a simple, computational model to examine how knowledge is structured in 
the mental lexicon, and how current knowledge might affect the acquisition of new word forms. 
In order to assess the knowledge that the network has, we examined how well it learned to asso-
ciate input and output patterns that were identical. Presenting the network with a pattern and 
examining the output that it produces is simply one way to evaluate the knowledge of the net-
work; see Section 2.1.4 of the present studies for another method we used to evaluate the knowl-
edge that the network acquired (i.e., generalization—accuracy in producing patterns that the 
network was not trained on).

One account for the acquisition of novel word forms (Storkel et al., 2006, among others) sug-
gests that the partial phonological overlap between a novel word and known words in the lexicon 
serves to strengthen the newly formed lexical representation of the novel word. However, in the 
case of spoken word recognition (e.g., Luce & Pisoni, 1998), phonological overlap results in 
increased confusability among word forms, making it more difficult to quickly and accurately 
retrieve a known word form from the lexicon. Similarly, Swingley and Aslin (2007) suggested that 
the partial phonological overlap among words leads to competition during word learning. In 
Experiment 1 we examined whether similar-sounding words would indeed facilitate (or interfere 
with) the acquisition of lexical word forms.

In Experiment 2 we examined whether the network could extract relevant information from 
the patterns that it was presented with if the words containing those patterns were presented 
over time, much like a human language-learner is presented with the words it must acquire, 
instead of all at once as in Experiment 1. Finally, in Experiments 3 and 4 we made various 
manipulations—such as reducing cognitive resources, or exposing the model to learning envi-
ronments that might retard typical development—that are difficult or unethical to implement 
in experiments with human language-learners to explore how word learning might be affected 
by these conditions.

Although the computational model used in the present study is admittedly simple, such models 
can nevertheless provide us with several important insights, as discussed by Lewandowsky (1993; 
see also Norris, 2005) and others. Namely, the computational model made explicit the mechanisms 
of word learning that were previously described only in verbal form (Jusczyk et al., 1994; Storkel 
et al., 2006). Making the hypothesized mechanisms of word learning explicit in a computational 
model prevents one from making predictions that are contradictory or logically incompatible—
which might occur unintentionally when making predictions from a model that exists only in ver-
bal form. Furthermore, the model that we developed in the present study enabled us to explore the 
influence of variables and conditions that—for ethical and practical reasons—would be impossible 
to examine in real word-learners.
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2 Experiment 1

A connectionist network of the type employed in the present study (multi-layered, auto- 
associative network with distributed representations) appears ideally suited for capturing the 
essence of the verbal theory of word learning proposed by Storkel et al. (2006; see also Jusc-
zyk et al., 1994). Recall that Storkel et al. (2006) suggested that the partial phonological over-
lap between a novel word and known words in the lexicon serves to strengthen the newly 
formed lexical representation of the novel word. That is, the novel word and the known words 
share certain sub-patterns, or regularities. The newly formed representation of a novel word 
with a sub-pattern or regularity that is more prevalent in the lexicon (i.e., the phonological 
sub-pattern is found in many words) will be strengthened to a greater extent than a newly 
formed representation of a novel word with a sub-pattern that is less prevalent in the lexicon, 
accounting for the advantage in learning novel words with dense neighborhoods observed in a 
number of word-learning studies.

The effect of shared sub-patterns or regularities on learning has also been examined in previ-
ous research with connectionist networks used to model various cognitive processes. The influ-
ence of these regularities and sub-patterns on learning has been referred to as a conspiracy 
effect, and comes about in connectionist models in the following way (Rumelhart et al., 1986, 
p. 81):

When a new item is stored, the modifications in the connection strengths must not wipe out existing items. 
This can be achieved by modifying a very large number of weights very slightly. If the modifications are 
all in the direction that helps the pattern that is being stored, there will be a conspiracy effect: The total help 
for the intended pattern will be the sum of all the small separate modifications…

In a connectionist model of the lexicon, a novel word form that is similar to—by the virtue of 
sharing sub-patterns with—many existing words in the lexicon will produce many small changes 
in the connection weights. Adding up many small changes in the connection weights will facilitate 
the storage of that novel item. In this way, the representation of a novel word may be “strength-
ened” by the representations of known words that sound similar to it. In contrast, a novel word 
form that is similar to few existing words in the lexicon will produce fewer small changes in the 
connection weights. Adding up fewer small changes in the connection weights results in less ben-
efit for the storage of that novel item.

Although it seems straightforward that known patterns will facilitate the acquisition of 
similar novel patterns in both humans (learning words) and connectionist networks, other 
studies of connectionist networks have found that similarity among items may lead to interfer-
ence or confusability among the similar items, and be detrimental to learning (Rumelhart  
et al., 1986). A similar detriment to learning (perhaps) resulting from similarity between 
known and novel items has also been observed in studies of word learning in humans (e.g., in 
typically developing children, Swingley & Aslin, 2007; in children with speech sound delays, 
Storkel, 2004). We therefore thought it prudent to verify that a multi-layered, auto-associative 
network with distributed representations would indeed capture the essence of the verbal theory 
of word learning proposed by Storkel et al. (2006; see also Jusczyk et al., 1994). If this type 
of connectionist network does indeed show a “conspiracy effect,” then such a model will be 
suitable for further exploring questions related to the influence of neighborhood density on 
word learning.
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2.1 Methods
2.1.1 Network architecture. A multi-layer network consisting of 18 input units, 6 hidden units, and 
18 output units was created with tLearn (Plunkett & Elman, 1997). Each of the input units was 
connected to each of the hidden units. Similarly, each of the hidden units was connected to each of 
the output units. All connections were feed-forward only; there were no feedback connections. 
That is, the input units fed information to the hidden units, and the hidden unit fed information to 
the output units; information did not flow “backwards” from the output units to the hidden units, 
nor from the hidden units to the input units.

Five “seeds” were used to initialize the random settings on the connection weights. The same 
five seeds were used to test both sets of stimuli (described below). One can think of each network 
“seed” as an individual participant in a conventional in vivo experiment, thereby allowing us to 
more broadly generalize the results of our experiments. Initial bias offset, used to introduce non-
linearity into the network, was set to zero. The initial weights were randomly distributed in the 
range ±.5. The learning rate, which determines how fast the weights are changed, was set to .1000. 
Momentum, which determines the proportion of the weight changes from the previous learning 
trial that will be used on the current learning trail, was set to .0003 (Plunkett & Elman, 1997). 
These values were the same for, and held constant throughout, all of the experiments that are 
reported.

The input activation function to the nodes is given in equation (1):

net w ai i j jj
=∑

where the net input to node i is the sum of the activation aj of the nodes that send to node i, and wij 
refers to the weights on the connections from nodes j to node i. The output activation function of 
each node is given in equation (2):

a
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where ai refers to the output of nodei, neti is the net activation flowing into the node, and e is the 
exponential.

The 18 input units received 18-bit vectors containing 1s and 0s as input. The first 6 bits in the 
vector represented the initial segment of a word, bits 7–12 in the vector represented the medial 
segment of a word, and bits 13–18 in the vector represented the final segment of a word. Because 
the same 18 input units were used to represent each word that the network had to learn, distributed 
representations were used in this network to represent the phonetic-like “micro-features,” described 
in more detail below (Rumelhart et al., 1986). Distributed representations contrast with localist 
representations in which a single processing unit responds to a concept or entity. If localist repre-
sentations were used to represent words in the present network, the model would be limited to 
acquiring only 18 words.

2.1.2 Stimuli. The network was presented with short “words” comprised of three phonological seg-
ments in a consonant-vowel-consonant syllable structure. (We use the term “word” with some 
liberty. All of these sequences were equally novel to the networks even though some of the 
sequences we created correspond to real words in English. The frequency with which the words 

(1)

(2)
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were presented to the network was the same for each word; that is, “word frequency” was con-
trolled.) Words were created using 10 consonants that were acquired relatively early in English 
(/p/, /b/, /k/, /g/, /t/, /d/, /f/, /v/, /m/, /n/) and 10 vowels, primarily monophthongs and non-phonemic 
dipthongs (/i/, /ɪ/, /e/, /ɛ/, /æ/, /u/, /ʊ/, /o/, /ɔ/, /ɑ/).

Six bits were used to code phonetic-like features for each segment in the words. The first bit 
coded the consonantal nature of the segment (1 = consonant, 0 = vowel). The second bit coded 
voicing (1 = voiced, 0 = voiceless). The third and fourth bits coded information that roughly cor-
responded to the manner of articulation with the third bit coding for sonority in the consonants and 
for tenseness in the vowels, and the fourth bit coding for continuance in the consonants and for 
roundedness in the vowels. The fifth and sixth bits coded information that roughly corresponded to 
place of articulation, with the fifth bit coding an anterior place of articulation, and the sixth bit cod-
ing for coronal articulation in consonants, or middle tongue height in vowels. Thus the word /vot/ 
would be presented to the network as 110110011101100011. Because of the limited number of 
features used to represent the phonemes, no central vowels were used.

The use of phonetic-like “micro-features” (Rumelhart et al., 1986) contrasts with the approach 
that has been used in some simulations looking at other aspects of language in which a whole word 
is represented with random bit vectors (e.g., Ellis & Lambon Ralph, 2000). Our decision to use 
micro-features should not be construed as a commitment to a particular linguistic, phonological, 
phonetic, or other type of theory. Rather, we simply wished to mimic (in an admittedly simplified 
way) the manner in which larger elements (i.e., words) are formed by combining smaller elements 
(i.e., phonemes) in real, human language (see Brousse & Smolensky, 1989, for a discussion of this 
type of combinatorial representational scheme). Furthermore, we used vectors to represent pho-
netic-like features rather than an arbitrary vector to represent the phonemes to give the network 
input that resembled, at least in a rudimentary way, the input a human word-learner receives.

2.1.3 Trained items. Using this set of phonetic-like features, we created 60 CVC sequences (listed 
in the Appendix) to train and assess the performance of the connectionist network. Eighteen of 
those items were designated “target” items, with the remaining 42 being “neighbors” of the targets. 
Of the 18 targets, 3 were designated to have a dense neighborhood and 15 were designated to have 
a sparse neighborhood. Each dense target had 9 neighbors, with 3 neighbors being formed by a 
substitution in each of the three phoneme positions. Each of the sparse targets had a single neigh-
bor, with 5 sparse targets having a neighbor being formed by a substitution in the initial phoneme 
position, 5 sparse targets having a neighbor being formed by a substitution in the medial phoneme 
position, and 5 sparse targets having a neighbor being formed by a substitution in the final pho-
neme position.

The construction of phonological neighbors using only the substitution of phonemes enabled us 
to use words of all the same length, which greatly simplified the architecture of the network. This 
decision should not be construed as a commitment to any theoretical or operational definition of 
neighbors, phonological similarity, etc. Further note that “neighbors” have also been defined in 
psycholinguistic experiments using only substitutions of phonemes, as well as the substitution, 
addition, and deletion of phonemes (see Davis, Perea, & Acha, 2009; Vitevitch, 2002).

No word was a neighbor of more than one target. In total there were 30 items distributed across 
3 neighborhoods that were designated as being part of a dense neighborhood, and 30 items distrib-
uted across 15 neighborhoods designated as being part of a sparse neighborhood.2

2.1.4 Generalization items. Using the same phonetic-like features, an additional 24 CVC sequences 
were created. Importantly, the network was not trained on any of these items. Rather, these 
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untrained items were used to test how well the model generalized the knowledge it may have 
acquired from the items in the training set. If the network shows comparable performance on the 
“generalization items” as it does on the items it was trained on, this would suggest that the network 
extracted important information about the regularities found in the input, and could use that infor-
mation to process the novel items. However, if the network fails to perform on the “generalization 
items” as it did on the trained items, this would suggest that the network learned only about the 
peculiarities of the trained items rather than more general information about the words it was 
trained on.

The 24 generalization items consisted of the following items: for each dense target, three new 
neighbors were created (one formed by a substitution in each phoneme position), and for each 
sparse target one new neighbor was created. For the sparse targets, five targets had generalization 
items formed by a substitution to the phoneme in the initial position, five targets had generaliza-
tion items formed by a substitution to the phoneme in the medial position, and five had generali-
zation items formed by a substitution to the phoneme in the final position. In each case, three of 
the five generalization items for the sparse targets were formed by a substitution in the same 
position as the trained neighbor, and one of the five generalization items was formed by a substi-
tution in each of the positions other than the trained neighbor.

To ensure that the results we obtained from the experiments were not due to unique characteris-
tics of the targets, neighbors, or generalization items, we rearranged the targets such that some of 
the items that had previously been designated “sparse” targets were now “dense” targets, and vice 
versa. Compare, for example, the word /vot/ and its neighbors in List A and in List B in the Appen-
dix. In List A, /vot/ was designated as a target word with a dense neighborhood, whereas in List B, 
the same word was designated as a target word with a sparse neighborhood. A new set of neighbors 
and generalization items was created following the same guidelines described above. One can 
think of the use of two “vocabularies” in the present experiment as being analogous to the counter-
balancing of stimuli in a conventional in vivo experiment, thereby allowing us to more broadly 
generalize the results of our experiments. Each network “seed” was trained and tested on both 
vocabularies.

2.1.5 Procedure. The connectionist network was trained with all of the 18 targets, and all of the 42 
neighbors for 1000 epochs using 5 different initial randomizations of connection weights. That is, 
all of the words were presented to the network for training regardless of whether they were targets 
or neighbors, and whether they were dense or sparse (with the exception of the generalization 
items, which the network was never trained on). The words were presented randomly without 
replacement. The same randomized start-states were used to train the network on the other set of 
18 targets, and 42 neighbors for 1000 epochs; again, presentation and training of the words occurred 
all at once. Training (i.e., adjustment of the connection weights) was accomplished using the back-
propagation learning algorithm (Elman et al., 1996). Weights were updated after the presentation 
of each pattern. Because our targets were 1s and 0s, cross-entropy error was used during training 
(to allow errors to continue to modify the connection weights, even though the nodes may have 
saturated), but root-mean-square error (RMSE) was analyzed in what follows.

2.2 Results and discussion
The data in the following computational experiments were analyzed in a manner analogous to the 
group studies employing human participants (cf., Spieler & Balota, 1997). That is, the overall per-
formance for each network (i.e., participant) was assessed by computing the mean RMSE (or 
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simply referred to as error in the text that follows) between the vector representing the output 
produced by the network and the desired output vector (i.e., a vector identical to the input vector) 
for the dense and sparse items of interest. Smaller error values indicate that the output of the model 
was closer to the desired output, suggesting better learning by the network. By contrast, larger error 
values indicate that the output of the model was further from the desired output, suggesting poorer 
learning by the network.

Analysis of variance (ANOVA) was used to compare the performance of the networks on the 
two groups of words. This method of analysis allowed us to determine if the (group of) networks 
produced a pattern of word learning that was qualitatively similar to the pattern of word learning 
observed in (groups of) human participants: dense words are strengthened more than and therefore 
are learned more readily than sparse words.

2.2.1 Trained Items. For the targets, the dense targets had less error (mean = .632, sd = .121) than the 
sparse targets (mean = 1.073, sd = .075), suggesting that the network more readily learned the dense 
targets than the sparse targets, F (1, 9) = 56.23, p < .0001. Similarly, for the neighbors, the words in 
the dense neighborhood had less error (mean = .945, sd = .038) than the words in the sparse neigh-
borhood (mean = 1.013, sd = .052), suggesting that the network more readily learned the dense 
neighbors than the sparse neighbors, F (1, 9) = 17.07, p < .01.

Notice that the size of the effect for the targets is larger than the size of the effect for the 
neighbors, even though all of the targets and neighbors were trained at the same time. To better 
understand this difference, it might be helpful to refer to the stimuli listed in the Appendix. First 
consider the sparse items. Each sparse target had only one word that was phonologically similar 
to it, namely the neighbor. Each neighbor in the sparse category also had only one word that 
was phonologically similar to it, namely the target word. Therefore, each sparse word (whether 
it was a target or a neighbor) was strengthened by the sub-patterns that occurred in only one 
other word.

Now consider, for example, the dense target word /vot/, which has nine words that are phono-
logically similar to it: /bot, dot, got, væt, vʊt, vct, vop, vog, vof/. The representation of the target 
word /vot/ was strengthened by the sub-patterns (e.g., _ot, v_t, vo_) that occur in those nine neigh-
bors. Now consider one of the neighbors of the target word /vot/, like /bot/. The word /bot/ has only 
three words that are phonologically similar to it: the target word /vot/, and the neighbors of the 
target word, /dot/ and /got/, which are also neighbors of the target /vot/. The difference in the num-
ber of words that are phonologically similar to each target and to each neighbor in the dense cate-
gory—and therefore the number of sub-patterns that serve to strengthen each target and each 
neighbor—may account for the difference in the size of the effect for the targets and the 
neighbors.

2.2.2 Generalization Items. To further test how known word forms influence the acquisition of novel 
words, we examined how the networks would respond to word forms that they had not been trained 
on (i.e., the “generalization items”). If the networks simply learned the peculiarities of the items 
they were trained on, then the networks should perform quite poorly on the generalization items, 
and should not show a processing advantage for untrained words that are part of a dense neighbor-
hood. Alternatively, if the networks extracted relevant sub-patterns from the input, and were able 
to exploit that information, then the networks should show an advantage in processing the novel 
words that are part of a dense neighborhood by producing smaller RMSE values for those generali-
zation items. The results show that novel items that belonged to the dense neighborhoods had less 
error (mean = 1.13, sd = .032) than the novel items that belonged to the sparse neighborhoods 
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(mean = 1.23, sd = .062), F (1, 9) = 19.41, p < .01, suggesting that the networks did indeed extract 
relevant sub-patterns from the input, and were able to exploit those sub-patterns to “strengthen” the 
representations of the novel words in the generalization set.

The results of the present experiment show that a “conspiracy” among sub-patterns found in 
many words serves to strengthen the representations of the words that contain those sub- 
patterns. Evidence of such “strengthening” was observed in the words that the network was 
initially trained on—compare the size of the effect for the targets and for the neighbors—and 
was also observed in a set of novel words that contained those sub-patterns (i.e., the generaliza-
tion items).

The results of the present experiment also suggest that the sub-patterns that are extracted from 
the words are larger than individual segments. As discussed in Note 2, the frequency with which 
the phonological segments occurred in the words varied in such a way that there tended to be more 
occurrences in the sparse words than in the dense words. This disparity might lead one to predict 
that the “additional practice” received by the segments in words with sparse neighborhoods should 
give sparse words a benefit in acquisition. The results of the present experiment, however, showed 
the opposite result: words with dense neighborhoods were learned better than words with sparse 
neighborhoods. This does not mean that the frequency with which segments occur in words (i.e., 
phonotactic probability) does not affect processing, or more specifically word learning; indeed, 
work by Storkel and Lee (2011) suggests that it does. Rather, we believe that the influence of pho-
notactic probability may be due to another level of representation (i.e., something smaller than 
words, such as biphones or phones, which are representations that were not included in the present 
model), or a different process related to word learning (i.e., a process that signals the cognitive 
system that the input is not known and should be learned as described by Storkel (2011); the word-
learning problems exhibited by children with functional phonological delays, as reported by Stor-
kel (2004), is also consistent with the hypothesis that lexical and sub-lexical representations are 
involved in word learning).

The conspiracy effect observed in our connectionist network provides us with a computational 
model that is more detailed than the verbal theory of word learning proposed by Storkel et al. 
(2006), which suggested that known words with dense neighborhoods strengthened representa-
tions of novel words to a greater degree than known words with sparse neighborhoods. Although 
this model does not account for all aspects of word learning, the model does capture an important 
part of word learning, and enables us to explore other questions about word learning that could not 
readily be examined with human participants.

Before exploring those questions with our model, it is necessary to address an important 
matter related to the manner in which training occurred in the present experiment. Recall that 
the network was trained on all of the targets and neighbors at once. The presentation of all of 
the items at once may have enabled the network to extract the relevant sub-patterns from the 
input, and use them to strengthen the representations of the word forms. Rarely (if ever) is one 
exposed to all of the words of a language at once. Rather, exposure to the words of a language 
occurs over time. The manner in which children are naturally exposed to the words in one’s 
language raises the important question of whether our connectionist network would be able to 
successfully extract relevant sub-patterns from the input, and use them to strengthen the rep-
resentations of word forms if that input were distributed over time. That is, the sub-patterns in 
the input are not present at the outset of training, simply waiting to be extracted; rather, the 
relevant sub-patterns appear in the input over time. To examine this important question, we 
conducted the following experiment, in which the network was incrementally trained on the 
word forms.
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3 Experiment 2

Although our connectionist network captures certain important aspects of the process of acquiring 
phonological word forms—namely, phonological similarity serves to strengthen lexical represen-
tations during acquisition—this effect may simply be an epiphenomenon of the manner in which 
the network was trained: all of the targets and neighbors were presented to the network at once. To 
verify that our connectionist network can extract relevant sub-patterns from input that is distrib-
uted through time, the present experiment trained the network incrementally on the targets and 
neighbors. For example, the network was first trained for 100 epochs on three words that would 
come to have a dense neighborhood, and three words that would come to have a sparse neighbor-
hood. In the next 100 epochs of training, the network continued to be trained on the initial set of 
items, but now received three more words with a dense neighborhood (i.e., one neighbor of each 
dense target) and three more words with sparse neighborhoods (i.e., new sparse targets). The net-
work continued to receive an increasing number of words in the training set in this way, until the 
network had received all of the dense and sparse items (which occurred after 1000 epochs of train-
ing, facilitating comparison to Experiment 1).

This method of exposing the network to the words in the training set more closely approximated 
in several ways the manner in which word-learners are exposed to the words that they acquire. 
First, as noted above, word-learners are not exposed to all of the words in their vocabulary all at 
once. Rather, a word-learner acquires the words that comprise his vocabulary gradually over time. 
In addition, words in the language with dense neighborhoods gradually come to have dense neigh-
borhoods in the vocabulary of a language-learner, with the asymmetry between dense and sparse 
neighborhoods increasing with development (Charles-Luce & Luce, 1990, 1995). Will the same 
learning benefits observed for words with dense neighborhoods in Experiment 1 be observed in the 
present experiment when the vocabulary is acquired in a manner more akin to how a child acquires 
his vocabulary?

With this more naturalistic way of exposing the network to words in the language, we were also 
able to examine two different aspects of word learning, namely, lexical configuration and lexical 
engagement. Leach and Samuel (2007) defined lexical configuration as the factual knowledge 
associated with a word, such as its phonological form, meaning, etc. This type of information is 
incremental in nature, with more knowledge of this type being added to the representation with 
each exposure. If our network does indeed acquire information regarding the lexical configuration 
of the first set of words it was trained on from the very beginning (i.e., the three “dense” and the 
three “sparse” targets), then the error rate for this initial set of words should decrease with each 
exposure.

In contrast, Leach and Samuel (2007) define lexical engagement as the way in which a lexical 
entry interacts with other lexical (and sub-lexical) representations (e.g., lexical word forms com-
pete during word recognition; Luce & Pisoni, 1998). If the items that our network is trained on 
truly become integrated into the lexicon, then relevant sub-patterns should emerge from the lexi-
con, despite the network being exposed to the input gradually over time (rather than all at once as 
in Experiment 1), and be increasingly exploited by the network when presented with novel items. 
The generalization items provide us with a unique way to evaluate the lexical engagement of the 
trained items. If newly trained words become integrated into the lexicon, then the network should 
better “see” the important sub-patterns that are gradually emerging, and can better exploit that 
information to process the novel generalization items, resulting in the error rate for the generaliza-
tion items (which the network is never trained with) decreasing over time. However, if information 
about the newly trained words is not integrated into the lexicon, then important sub-patterns will 
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not be detected or exploited in the processing of the generalization items, resulting in the error rate 
for the generalization items remaining unchanged over time. To evaluate the ability of the network 
to extract relevant sub-patterns from incrementally presented input, and to assess lexical configura-
tion and lexical engagement, the present experiment was performed.

3.1 Methods
3.1.1 Network architecture. The same network architecture, software package, and parameter set-
tings used in Experiment 1 were used in the present experiment. However, different “seeds” were 
used to provide randomized initial connection weights to the networks.

3.1.2 Stimuli. The same targets, neighbors, and generalization items used in Experiment 1 were 
used in the present experiment. As in the previous experiment, some of the targets were re-assigned 
to different neighborhood density conditions to better generalize our results.

3.1.3 Procedure. The network was trained for 100 epochs on three dense and three sparse words. 
For training epochs 101–200, the network continued to be trained on the initial set of items, but 
now received three more words with a dense neighborhood (i.e., one neighbor of each dense target) 
and three more words with sparse neighborhoods (i.e., new sparse targets). For training epochs 
201–300, the network continued to be trained on the previous 12 items, but now received three 
more words with a dense neighborhood (i.e., one neighbor of each dense target) and three more 
words with a sparse neighborhood (i.e., neighbors of the sparse items from the initial training set). 
Training continued in this way with the dense words continuing to receive a new neighbor, and the 
sparse words alternating between learning a new sparse target and the neighbor of a previously 
learned sparse target.

3.2 Results and discussion
To demonstrate that the finding obtained in Experiment 1—novel words with dense neighborhoods 
are acquired more readily than novel words with sparse neighborhoods—was not due to the par-
ticular way in which the network was trained on the words in the vocabulary, we trained the net-
work in the present experiment on a vocabulary that gradually increased in size. As in Experiment 
1, network performance was assessed with the mean RMSE. Smaller error values indicate that the 
output of the model was closer to the desired output, suggesting better learning by the network, 
whereas larger error values indicate that the output of the model was further from the desired out-
put, suggesting poorer learning by the network. ANOVA was again used to compare the perfor-
mance of the networks on the two groups of words varying in neighborhood density.

3.2.1 Trained items. For the targets, the dense targets had less error (mean = .548, sd = .064) than 
the sparse targets (mean = 1.047, sd = .054) after 1000 epochs of incremental training, suggesting 
that the network more readily learned the dense targets than the sparse targets, F (1, 9) = 233.346, 
p < .0001. Similarly, for the neighbors, the words in the dense neighborhood had less error (mean 
= .939, sd = .044) than the words in the sparse neighborhood (mean = 1.012, sd = .056) after 1000 
epochs of incremental training, suggesting that the network more readily learned the dense neigh-
bors than the sparse neighbors, F (1, 9) = 11.45, p < .01. Despite being exposed to the input in an 
incremental fashion, the network was still able to extract relevant sub-patterns from the input and 
exploit those regularities to learn the dense items better than the sparse items.
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3.2.2 Generalization items. As in Experiment 1, we examined the performance of the networks on 
a set of novel words that they had not been trained on (i.e., the “generalization items”). If the net-
works simply learned the peculiarities of the items they were trained on in this incremental training 
regime, then the networks should perform quite poorly on the generalization items, and should not 
show a processing advantage for untrained words that are part of a dense neighborhood. Alterna-
tively, if the networks extracted relevant sub-patterns from the input they received over time, and 
were able to exploit that gradually unfolding information, then the networks should show an 
advantage in processing the novel words that are part of a dense neighborhood by producing 
smaller RMS values for those generalization items.

The results showed that novel items that belonged to the dense neighborhoods had less error 
(mean = 1.08, sd = .061) than the novel items that belonged to the sparse neighborhoods (mean = 
1.16, sd = .068), F (1, 9) = 5.89, p < .05, after 1000 epochs of incremental training, suggesting that 
the networks did indeed extract relevant sub-patterns from the input, and were able to exploit those 
gradually unfolding sub-patterns to “strengthen” the representations of the novel words in the gen-
eralization set. The present results suggest that the ability of the network to exhibit a conspiracy 
among relevant sub-patterns that strengthen similar lexical representations is not due solely to the 
network being trained on all of the targets and neighbors at the same time; relevant sub-patterns 
can indeed be extracted from input that is distributed through time.

3.2.3 Lexical configuration and lexical engagement. To assess the ability of the network to acquire 
information related to lexical configuration and lexical engagement, additional analyses were per-
formed on the data from the present experiment. If our network continued to acquire information 
regarding the lexical configuration of the first set of words it was trained on (i.e., “factual” infor-
mation about those word forms), then the error rate for this initial set of words should decrease with 
additional exposures. Network performance on the six items that the network was initially trained 
on (three that would come to have a dense neighborhood and three that would come to have a 
sparse neighborhood) was evaluated after every 100 epochs (for a total of 1000 epochs). In assess-
ing network performance, the amount of error for each pattern was calculated using the RMS. A 2 
(Density) × 10 (Epochs) ANOVA was used to assess the amount of RMSE in these items over 
time. Larger error values indicate that the model did not learn those patterns very well, whereas 
smaller error values indicate that the model learned those patterns more readily.

The mean RMSE for the targets at every 100 epochs is shown in Figure 1. Consistent with the 
prediction that the network would continue to acquire information regarding the lexical configura-
tion of the first set of words it was trained on (i.e., “factual” information about those word forms), 
the error rate for this initial set of words decreased with additional exposures. That is, the RMSE 
was significantly less after 1000 epochs of training (mean = .697, sd = .181) than the RMSE after 
only 100 epochs of training (mean = 1.397, sd = .083), F (9, 81) = 382.674, p < .0001. As in the 
previous analyses, an influence of neighborhood density was also observed. The initially trained 
items that would come to have dense neighborhoods had overall less error (mean = .873, sd = .291) 
than the initially trained items that would come to have sparse neighborhoods (mean = 1.040, sd = 
.194), further suggesting that the network more readily learned the dense items than the sparse 
items, F (1, 9) = 10.116, p < .05.

Perhaps more interestingly, there was a significant interaction between density and training, 
F (9, 81) = 16.150, p < .0001, such that the dense targets improved more with training (a decrease 
in RMSE of .890 from 100 to 1000 epochs) than the sparse targets (a decrease in RMSE of .511 
from 100 to 1000 epochs). Notice that at 100 epochs the difference in performance between the 
dense (mean = 1.438, sd = .052) and sparse target words (mean = 1.357, sd = .091) is not 
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statistically significant, F (1, 9) = 4.710, p > .05. This is not surprising, as none of the target 
words had any neighbors at this point in training, meaning there was no difference in neighbor-
hood density yet. This condition provides us with an important “baseline” from which to track 
the influence of adding neighbors to the training set. As training progressed, one neighbor was 
added to the neighborhood of the sparse targets, whereas nine neighbors eventually populated 
the neighborhood of the dense targets. As the asymmetry in the number of neighbors in the dense 
and sparse neighborhoods increased over time, the processing benefit for the target word in the 
dense neighborhoods also increased. This provides additional support for the hypothesis that 
similar-sounding words act to strengthen lexical representations, with more neighbors confer-
ring greater benefit. This finding also highlights how the processing benefits of a dense neigh-
borhood can accrue over time.

To examine lexical engagement in our network, we examined performance on the generaliza-
tion items as the network was being incrementally trained. If newly trained words are integrated 
into the lexicon, then the network should continually extract the gradually emerging but relevant 
sub-patterns to better process the novel generalization items. This should result in the error rate for 
the generalization items (which the network was never trained with) decreasing over time. How-
ever, if information about the newly trained words is not integrated into the lexicon, then important 
sub-patterns will not be detected or exploited in the processing of the generalization items, result-
ing in the error rate for the generalization items remaining unchanged over time.

The mean RMSE for the generalization items at every 100 epochs is shown in Figure 2. As the 
network was trained on an increasing number of targets and neighbors, network performance on 
the (untrained) generalization items improved over time. That is, the RMSE was significantly less 
after being trained on all of the targets and neighbors at 1000 epochs of training (mean = 1.120, sd 
= .075) than the RMSE after only being trained on three dense targets and three sparse targets at 
100 epochs of training (mean = 1.338, sd = .196), F (9, 81) = 504.805, p < .0001. These results 
suggest that lexical engagement was indeed occurring. That is, information about the new items the 
network was trained on was indeed being integrated into the lexicon, enabling the network to 
extract relevant sub-patterns and exploit those sub-patterns to continually improve upon its pro-
cessing of the (untrained) generalization items. If the network was only learning more “factual” 
information about each trained word to simply improve the representation of those items (i.e., lexi-
cal configuration) rather than dynamically integrating those newly acquired word forms into the 

Figure 1. Root-mean-square error over 1000 epochs of incremental training for the six items the 
network was initially trained on (three dense and three sparse).
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lexicon, then performance on the generalization items would have remained the same regardless of 
how many or what kind of words were acquired.

Furthermore, the novel generalization items that were part of the dense neighborhoods had less 
error (mean = 1.279, sd = .166) than the novel generalization items in the sparse neighborhoods 
(mean = 1.398, sd = .206), F (1, 9) = 18.274, p < .01. This result provides additional evidence in 
support of a lexical conspiracy: words that resemble many known words in the lexicon are 
“strengthened” to a greater extent than words that resemble few known words in the lexicon.

Finally, there was an interaction between density and epochs for the generalization items, F (9, 
81) = 15.487, p < .0001, such that the RMSE decreased less over time for the novel generalization 
items that were part of a dense neighborhood (a decrease in RMSE of .509 from 100 to 1000 
epochs) than the novel generalization items that were part of a sparse neighborhood (a decrease in 
RMSE of .609 from 100 to 1000 epochs). Although it might seem counter-intuitive that a smaller 
decrease in error is indicative of better performance, consider the following explanation to see how 
this result is still consistent with the hypothesis that a novel word is strengthened to a greater 
degree by being similar to many rather than few known words.

In a connectionist model with distributed representations, the same processing units are used to 
produce various patterns of activation to represent each of the words in the lexicon. In the case of 
a dense neighborhood, the connection weights on those processing units assume values that lie 
somewhere in the middle of all of the values of the connection weights associated with the words 
in the neighborhood, thereby minimizing overall error in the representation of any of those words. 
As more words continue to be added to a dense neighborhood, smaller and smaller changes are 
required to maintain optimal values for the connection weights. When the network is tested on a 
novel word from a dense neighborhood, the novel word is never very far from the other words in 
the neighborhood and therefore never very far from the optimized values of the connection weights. 
As the connection weights are “tuned” more and more finely to better represent the words in the 
dense neighborhood, the amount of error produced by the network in processing the novel word 
(i.e., the generalization item) will also continue to decrease.

However, in the case of a sparse neighborhood, the connection weights have been configured to 
represent the known target word with as little error as possible. The subsequent addition of a word 
to such a neighborhood may require a large change in some of the connection weights in order to 
maintain the representation of the known word (i.e., the target), and to represent the newly added 
neighbor. When the network is tested on a novel word from a sparse neighborhood, the novel word 

Figure 2. Root-mean-square error for the generalization items over 1000 epochs of incremental training.



Vitevitch and Storkel 507

may be very far from the other words in the neighborhood, and will therefore be very far from the 
optimized values of the connection weights, resulting in a large amount of error in processing the 
generalization item. As the connection weights are not tuned as often as they are when new words 
are added to a dense neighborhood, the network will continue to produce a relatively large amount 
of error in processing the generalization item with a sparse neighborhood.

Overall, the results of Experiment 2 resemble those of Experiment 1 in that similar lexical rep-
resentations conspire to facilitate the processing of novel representations. Specifically, processing 
of novel items that are similar to many known words will benefit to a greater degree than novel 
items that are similar to few known words. The important contribution of Experiment 2 is that this 
facilitative effect among lexical representations was shown to emerge even when the lexicon grew 
over time. Recall that in Experiment 1, the network was trained on the entire vocabulary all at once, 
not in an incremental fashion as in the present experiment. The facilitative effect among lexical 
representations can, therefore, emerge as the relevant sub-patterns in the input unfold over time. 
Given that the network can still extract relevant sub-patterns with incremental exposure to the 
input—a manner of exposure that is more similar to the way humans are exposed to the words in 
the ambient language—we now have a simple, computational model of word learning that can be 
used to explore the questions we initially posed: how is the process of word learning affected by 
differences (in cognitive resources) among word-learners and by differences in the word-learning 
environment?

4 Experiment 3

The results obtained from Experiments 1 and 2 suggest that (at least one aspect of) learning novel 
word forms may rely on a general processing principle that is captured by our simple connectionist 
model: known words that are similar to each other conspire to strengthen the representations or 
facilitate processing of phonologically similar novel words. With this simple model, we can now 
explore a number of questions about word learning that we might not be able to examine easily 
with human word-learners. For example, a number of researchers have suggested that various cog-
nitive resources—short-term memory (Gathercole & Baddeley, 1989) or attention (Dixon &  
Salley, 2006)—influence the process of word learning, such that learning becomes more difficult 
(i.e., more errors are made) when fewer processing resources are allocated to the word-learning 
process. More specifically, how might differences in cognitive resources influence the processing 
advantage for words from dense neighborhoods in word learning (observed in numerous studies 
and in Experiments 1 and 2)? One might predict that a reduction in cognitive resources will affect 
the learning of dense and sparse words equivalently, resulting in an overall decrement in word-
learning performance. A larger reduction in cognitive resources would result in a larger perfor-
mance decrement in word learning.

Alternatively, one might predict that a reduction in cognitive resources will result in the devel-
opment of an alternative (and overall less efficient) processing strategy to learn new words. In the 
context of learning novel words from dense and sparse neighborhoods, one might expect to observe 
the processing advantage for words from dense neighborhoods, but only in a limited range of avail-
able processing resources. Once cognitive resources have been reduced below a certain point, 
however, one might expect an alternative processing strategy to emerge: because of their unique-
ness, novel words from sparse neighborhoods may now be more readily learned than words from 
dense neighborhoods. As there are fewer words in sparse neighborhoods (by definition), fewer 
words overall will, of course, be learned, resulting in what appears to be a decrement in word-
learning performance when cognitive resources are reduced.
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To further explore how differences in the internal processing resources available to the net-
work influence the advantage in word learning for words from dense neighborhoods, the present 
experiment was performed. The amount of internal processing resources available to the net-
work was manipulated by varying the number of “hidden” units in the model from one to six. 
(Recall that the networks used in Experiments 1 and 2 had six hidden units.) Manipulating the 
number of hidden units in a network is a well-established approach for approximating differ-
ences in computational resources in humans (Brown, 1997; Seidenberg & McClelland, 1989; 
Thomas & Karmiloff-Smith, 2003). The results of this experiment may offer unique insight into 
the debate about the cause of various language disorders. The two outcomes described above 
roughly correspond to the classic distinction made in the literature, and described by Rice (2003), 
between language delay and language deviance as the underlying cause of various language 
disorders. Said another way, language disorders may simply be extreme cases of normal varia-
tion in processing rather than the result of a qualitatively different processing mechanism (Tom-
blin, Zhang, Weiss, Catts, & Ellis Weismer, 2004).

In the case of the present simulation, an outcome consistent with the idea that language disor-
ders are caused by language delay would be a continuous change in the number of hidden units 
being associated with a continuous change in performance in the word-learning task (i.e., dense is 
always better than sparse, but overall performance decreases as the number of hidden units 
decreases). An outcome consistent with the idea that language disorders are caused by language 
deviance would be a discontinuous shift, for example, an advantage for dense over sparse words 
when the networks had four to six hidden units, but an advantage for sparse over dense words when 
the networks had one to three hidden units.

4.1 Methods
4.1.1 Network architecture. The same network software package used in Experiments 1 and 2 
was used in the present experiment. The network architecture was also similar to that used in 
Experiments 1 and 2, except the number of hidden units varied from one hidden unit to six 
hidden units (the number of hidden units used in Experiments 1 and 2). A new set of random 
“seeds” was used in the present experiment to provide randomized initial connection weights 
to the networks, but the same set of seeds was used in each of the networks in this 
experiment.

4.1.2 Stimuli. The same targets, neighbors, and generalization items used in Experiment 1 were 
used in the present experiment.

4.1.3 Procedure. The network was trained on all of the targets and neighbors at the same time (as 
in Experiment 1) for 1000 epochs.

4.2 Results and discussion
A 2 (Density) × 6 (Number of Hidden Units) ANOVA was used to assess the performance of the 
networks (via RMSE) when tested on the targets and neighbors (which the networks were trained 
on for 1000 epochs) and on the (untrained) generalization items. Smaller error values indicate that 
the output of the model was closer to the desired output, suggesting better learning by the network, 
whereas larger error values indicate that the output of the model was further from the desired out-
put, suggesting poorer learning by the network.
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4.2.1 Trained items. For the targets (see Figure 3), a main effect of neighborhood density was 
observed such that dense targets had less error (mean = 1.243, sd = .315) than the sparse targets 
(mean = 1.485, sd = .208) after 1000 epochs of training, suggesting that all of the networks more 
readily learned the dense targets than the sparse targets, F (1, 54) = 805.758, p < .0001. A main 
effect of number of hidden units was observed, such that the networks with more hidden units (i.e., 
internal processing resources) learned the target words better (six hidden units: mean = 1.175, sd = 
.346) than networks with fewer hidden units (one hidden unit: mean = 1.583, sd = .122), F (5, 54) 
= 108.560, p < .0001.

Finally, an interaction between neighborhood density and number of hidden units was observed, 
such that the networks with greater processing resources discriminated between the dense and 
sparse targets more than the networks with fewer processing resources: the network with six hid-
den units had a mean difference of .276 between dense and sparse targets, whereas the network 
with one hidden unit had a difference of .166 between dense and sparse targets, F (5, 54) = 6.706, 
p < .001. The nature of this interaction (ordinal rather than disordinal) suggests that networks with 
a smaller amount of processing resources do not adopt a completely different processing strategy 
to networks with greater amounts of processing resources in order to perform the task of learning 
words. Rather, all of the networks—regardless of the amount of internal processing resources 
available to them—employed a similar processing strategy to learn the words. The difference in the 
amount of internal processing resources available to the networks seemed only to influence the 
degree of success that the networks had in learning the words. These results suggest that problems 
in word learning related to processing resources may be better described as language delays rather 
than language deviances (Rice, 2003).

To further illustrate that the networks employed similar mechanisms to learn the target words, 
but that the networks with fewer processing resources were simply delayed in their learning, we 
equated the performance of the network with six hidden units to the performance of the network 
with one hidden unit (an approach that is commonly employed in studies examining language dis-
orders to distinguish language delay from language disorder). Equivalent performance on dense 
and sparse targets was observed after 500 epochs of training in the network with one hidden unit 

Figure 3. Mean root-mean-square error after 1000 epochs of training for the dense and sparse target 
words in networks with varying numbers of hidden units.
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(dense = 1.467; sparse = 1.663) and only 100 epochs of training in the network with six hidden 
units (dense = 1.498; sparse = 1.643), F (1, 18) = 3. 405, p = .08, not significant. Clearly the net-
work with fewer processing resources could learn the dense and sparse targets, and learn them as 
well as the network with more processing resources. The network with fewer processing resources, 
however, required additional training to do so. This result further suggests that problems in word 
learning related to processing resources may be better described as language delays rather than 
language deviances (Rice, 2003).

Analysis of the neighbors showed a fairly similar pattern of results. A main effect of neighbor-
hood density was observed such that dense neighbors had less error (mean = 1.371, sd = .221) than 
the sparse neighbors (mean = 1.444, sd = .224) after 1000 epochs of training, suggesting that all of 
the networks more readily learned the dense neighbors than the sparse neighbors, F (1, 54) = 
205.851, p < .0001. A main effect of number of hidden units was observed such that the networks 
with more hidden units (i.e., internal processing resources) learned the target words better (six hid-
den units: mean = 1.238, sd = .276) than networks with fewer hidden units (one hidden unit: mean 
= 1.596, sd = .087), F (5, 54) = 196.313, p < .0001. In this case, however, there was no interaction 
between neighborhood density and number of hidden units, F (5, 54) = .339, p = .88, not 
significant.

As with the targets, equivalent performance on the dense and sparse neighbors was observed 
after 500 epochs of training in the network with one hidden unit (dense = 1.535; sparse = 1.636) 
and only 100 epochs of training in the network with six hidden units (dense = 1.547; sparse = 
1.630), F (1, 18) = 1.391, p = .25, not significant. Like the targets, the network with fewer process-
ing resources required more training epochs to reach the same level of performance on the dense 
and sparse neighbors as the network with more processing resources, further suggesting that prob-
lems in word learning related to processing resources may be better described as language delays 
rather than language deviances.

4.2.2 Generalization items. To further demonstrate that the networks with only one hidden unit were 
learning to extract relevant sub-patterns from the input, but were only doing it more slowly than 
the networks with six hidden units, we examined the performance of networks on the (untrained) 
generalization items. If the reduction in processing resources limited the network with just one 
hidden unit to learn only about the items it was trained on rather than to extract relevant sub-pat-
terns from the input and exploit those patterns when processing other items, then performance on 
the generalization items should be quite poor. Such a result might then suggest that the networks 
with fewer processing resources were employing a qualitatively different processing mechanism to 
learn words. Alternatively, if all of the networks were able to generalize performance to a novel set 
of words, but at different rates, that might further suggest that problems in word learning related to 
processing resources may be better described as language delays rather than language deviances.

For the generalization items, a main effect of neighborhood density was observed such that 
there was less error on the generalization items from the dense neighborhoods (mean = 1.449, 
sd = .171) than on the generalization items from the sparse neighborhoods (mean 1.549, sd = 
.166) after 1000 epochs of training, suggesting that all of the networks extracted relevant sub-
patterns from the input and exploited that information in the processing of the novel items, F 
(1, 54) = 241.101, p < .0001. A main effect of number of hidden units was also observed such 
that the networks with more hidden units (i.e., internal processing resources) performed better 
on the generalization items (six hidden units: mean = 1.382, sd = .224) than networks with 
fewer hidden units (one hidden unit: mean = 1.638, sd = .078), F (5, 54) = 72.088, p < .0001. 
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Again, there was no interaction between neighborhood density and number of hidden units, F 
(5, 54) = .793, p = .56, not significant.

Equivalent performance on the novel dense and sparse generalization items was also observed 
after 500 epochs of training in the network with one hidden unit (dense = 1.564; sparse = 1.687) 
and only 100 epochs of training in the network with six hidden units (dense = 1.581; sparse = 
1.6870, F (1, 18) = .522, p = .48, not significant. This result suggests that fewer processing resources 
not only impair the acquisition of the targets and neighbors, but also reduces the ability of the net-
work to extract relevant sub-patterns from the input and exploit them in the processing of novel 
items. This result is also consistent with the results obtained in the analyses of the targets and 
neighbors in suggesting that problems in word learning related to processing resources may be bet-
ter described as language delays rather than language deviances.

The results of the present experiment further suggest that known words are used to “strengthen” 
the representations of phonologically similar novel words, such that a novel word that is similar to 
many known words will be learned more readily than a novel word that is similar to few known 
words. More interestingly, the results of the present experiment suggest that this influence of 
known words on the learning of novel words is robust to differences in the availability of process-
ing resources. That is, regardless of how many hidden units the networks possessed, a word learn-
ing advantage for dense words was still observed. Granted, in the networks with fewer processing 
resources (i.e., fewer hidden units), learning proceeded at a slower rate than the networks with 
more processing resources (i.e., many hidden units), but radically different learning strategies were 
not employed to circumvent the restriction of resources in order to learn the words.

Interestingly, a similar pattern of delayed rather than deviant learning has been observed in real 
word-learners. Evans, Saffran, and Robe-Torres (2009) found that children with specific language 
impairment (SLI) were able to implicitly compute the probabilities of adjacent sound sequences 
and thereby learn novel words embedded in a continuous stream of artificial speech. However, the 
children with SLI required approximately double the exposure to the artificial language as their 
typically developing peers to reach the same level of above-chance performance. Although on the 
surface the patterns of behavior are similar, it is important to acknowledge the differences between 
the present simulation and the experiments reported by Evans et al. with regard to the task 
employed, the cognitive demands of the task, the type of learning examined, etc.

5 Experiment 4

The experiments in the present study examined how the number of similar-sounding words affects 
the acquisition of those words. Being similar to many words resulted in a larger lexical conspiracy 
that facilitated acquisition of those words to a greater extent than being similar to fewer words. 
This benefit to processing was observed when the words to be acquired were presented all at once 
(Experiment 1), as well as when the words to be acquired were distributed over time (Experiment 
2). In Experiment 3, we were able to examine how differences in the availability of processing 
resources further affected the influence of neighborhood density on word learning. In each case, a 
robust advantage in learning novel words that were similar to many rather than few known words 
was observed.

In the present experiment we sought to examine how varying the input might influence the 
processing advantage typically observed in word learning. A classic approach to studying word 
learning is to examine the input that a child receives (e.g., the work of Roger Brown, 1973). Fur-
thermore, current verbal models of word learning suggest that children extract relevant patterns 
from the input and then use these patterns to facilitate learning (e.g., Hirsch-Pasek, Golinkoff, & 
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Hollich, 2000; Smith, 2000). Moreover, the main approach in conventional speech and language 
therapy is to alter the input in some way. Taken together, the structure of the input is viewed as 
crucial for learning from a variety of perspectives. In Experiments 1–3, the input to the model was 
balanced with regards to the number of dense and sparse words the networks received. How would 
the facilitative influence of neighborhood density on word learning be affected if the input was not 
balanced?

The strict control of lexical exposure required to examine this question in the real world is, of 
course, not something that could be accomplished with ease. Furthermore, the possibility that 
manipulating the input might actually retard language development in some way also makes explo-
ration of this question in the real world problematic on ethical grounds. However, in addition to 
using computational models to better specify the mechanisms described by verbal models (Elman 
et al., 1996; Lewandowsky, 1993), “computational experiments” can be used to explore questions, 
such as the present one, that are difficult—for ethical or practical reasons—to examine in the real 
world (Plunkett & Elman, 1997). Therefore, we examined this question with our computational 
model using the experimental approach of testing extremes. That is, the networks in the present 
experiment either received incremental training on all of the dense words first, followed by all of 
the sparse words (dense-sparse training regime), or received incremental training on all of the 
sparse words first, followed by all of the dense words (sparse-dense training regime). To examine 
longer-term effects of this unbalanced exposure regime, we continued to train the networks for an 
additional 1000 epochs on the full set of targets and neighbors.

5.1 Methods
The same network software package used in the previous experiments was used in the present experi-
ment. The network architecture, stimuli, and training procedure were also similar to those used in 
Experiment 2, with the following exception. Five networks were first exposed to the items from 
dense neighborhoods (six words at a time, for 100 epochs, with six more words added to the training 
set, etc.). Once the network had been exposed to all 30 items (targets and neighbors) from the dense 
neighborhoods, the items from the sparse neighborhoods were added to the training sets (with six 
sparse items added to the training set, trained for 100 epochs, then six more sparse items added to the 
training set, etc.). This training regime will be referred to as the dense-sparse training regime.

Another set of five networks (which were identical in every way except in the training regime) 
was first exposed to the items from sparse neighborhoods (six words at a time, for 100 epochs, with 
six more words added to the training set, etc.). Once the network had been exposed to all 30 items 
(targets and neighbors) from the sparse neighborhoods, the items from the dense neighborhoods 
were added to the training sets (with six dense items added to the training set, trained for 100 
epochs, and six more dense items added to the training set, etc.). This training regime will be 
referred to as the sparse-dense training regime.

Training to 1000 epochs of incremental learning facilitated comparison to Experiment 2. How-
ever, to further examine the long-term consequences of these different training regimes, we contin-
ued to train the network on all of the targets and neighbors (now presented all together) for an 
additional 1000 epochs.

5.2 Results and discussion
Network performance was again assessed using RMSE. Rather than just evaluate the networks 
after receiving 1000 epochs of training, we wanted to better capture how the performance of the 
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networks might change as a function of the different training regimes. Consequently, a 2 (Training 
Regime: Dense-sparse versus Sparse-dense) × 2 (Density: Dense versus Sparse) × 2 (Epochs: 100, 
1000) ANOVA was used to assess the amount of RMSE (separately) in the targets, neighbors, and 
generalization items so that we could present a better picture of how performance changed over 
time as a function of the different training regimes.

Separate analyses were also performed after the additional 1000 epochs of training that the 
networks received on all of the targets and neighbors (i.e., network performance assessed at epoch 
2000). Smaller error values indicate that the output of the model was closer to the desired output, 
suggesting better learning by the network, whereas larger error values indicate that the output of 
the model was further from the desired output, suggesting poorer learning by the network.

5.2.1 Target word forms. A significant three-way interaction was found among the variables train-
ing regime, density, and epochs, F (1, 18) = 16.992, p < .001. All of the two-way interactions and 
main effects were also significant. Not surprisingly, there was a main effect of epoch, indicating 
that performance on the targets improved with training (mean after 1000 epochs = .883, sd = .246, 
mean after 100 epochs = 1.657, sd = .281), F (1, 18) = 1514.237, p < .0001. To facilitate discussion 
of the three-way interaction, we will consider the networks early in training (after being exposed 
to 100 training epochs, and only a portion of the input) and later in training (after being exposed to 
1000 training epochs, and all of the input).

After 100 epochs of training (see Figure 4), a significant two-way interaction was observed 
between density and training regime, F (1, 18) = 498.276, p < .0001. In the dense-sparse training 
regime, performance on the sparse targets (which the network had not been exposed to yet, mean 
= 1.905, sd = .036) was poorer than performance on the dense targets (which the network had been 
trained on for 100 epochs, mean = 1.235, sd = .100). However, in the sparse-dense training regime, 
performance on the sparse targets (which the network had been trained on for 100 epochs, mean = 
1.624, sd = .066) was better than performance on the dense targets (which the network had not been 
exposed to yet, mean = 1.863, sd = .110). It is perhaps not surprising that the networks performed 
well on the items they had been trained on, and more poorly on items they had not been trained on, 
even if that exposure was brief (i.e., 100 epochs).

Figure 4. Mean root-mean-square error after 100 epochs of training for the dense and sparse targets in 
the two training regimes.
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After 1000 epochs of training (see Figure 5), when the networks had been exposed to all of the 
items, performance of the networks again showed an interaction between training regime and den-
sity, F (1, 18) = 534.519, p < .0001. In the dense-sparse training regime, performance on the dense 
targets remained better (mean = .520, sd = .050) than performance on the sparse targets (mean = 
1.190, sd = .045). However, in the sparse-dense training regime, performance on the dense targets 
(mean = .924, sd = .064) was equivalent to performance on the sparse targets (mean = .900,  
sd = .036). Despite a late entry into the training set, the relevant sub-patterns in the dense words 
were extracted and exploited, allowing the network to improve the representation of these items at 
a faster rate than the sparse words. That is, the representations of the dense targets were strength-
ened to such an extent that performance on the dense targets “caught up” to the performance on the 
sparse targets, even though the network had received more training overall on the sparse targets.

The networks received 1000 additional exposures to all of the dense and sparse words. During 
these exposures no new words were added to the training set. Thus, the network simply received 
additional exposure to all of the targets (and neighbors), and performance was assessed after a total 
of 2000 epochs. At epoch 2000 (see Figure 6), performance of the networks showed an interaction 
between training regime and density, F (1, 18) = 31.892, p < .0001. In the dense-sparse training 
regime, performance on the dense targets remained better (mean = .380, sd = .069) than perfor-
mance on the sparse targets (mean = .916, sd = .050). However, in the sparse-dense training regime, 
performance on the dense targets (mean = .498, sd = .100) was now better than performance on the 
sparse targets (mean = .743, sd = .072), despite the initial advantage observed for sparse targets in 
this training regime.

A well-known characteristic of connectionist networks is that smaller changes tend to be made 
to connection weights as training progresses. It is therefore somewhat surprising that the dense 
words in the sparse-dense training regime—which were added to the training set relatively late in 
the training process—were learned as well as they were. The common sub-patterns found among 
the neighbors of words in dense neighborhoods may suggest a method for overcoming the decrease 
in plasticity of the connection weights that occurs as training progresses often observed in net-
works of this type. Additional computational experiments are required to determine the relevant 
parameters by which this approach affects the plasticity of the network—such as the number and 

Figure 5. Mean root-mean-square error after 1000 epochs of training for the dense and sparse targets in 
the two training regimes.
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diversity of sub-patterns in the training set, and when those items enter the training set—as well as 
their limits.

5.2.2 Neighboring word forms. For the neighbors, a significant three-way interaction was also found 
among the variables training regime, density, and epochs, F (1, 18) = 7.804, p < .05. As with the 
targets, there was a main effect of epoch, indicating that performance on the targets improved with 
training (mean after 1000 epochs = 1.009, sd = .119; mean after 100 epochs = 1.705, sd = .151), F 
(1, 18) = 1414.760, p < .0001. As above, to facilitate discussion, we will consider the networks 
early in training (after being exposed to 100 training epochs, and only a portion of the input) and 
later in training (after being exposed to 1000 training epochs, and all of the input).

After 100 epochs of training (see Figure 7), a significant two-way interaction was observed 
between density and training regime, F (1, 18) = 447.581, p < .0001. In the dense-sparse training 
regime, performance on the sparse neighbors (which the network had not been exposed to yet, 
mean = 1.874, sd = .036) was poorer than performance on the dense neighbors (mean = 1.521, sd 
= .046). Note that the network had only been exposed to the dense target words and one neighbor 
of each of the target words at this point in training: they had not actually been trained on all of the 
dense neighbors yet. Despite this limited exposure, the network was able to extract and exploit 
relevant sub-patterns to more efficiently process the (mostly untrained) dense neighbors.

In the sparse-dense training regime, performance on the sparse neighbors (for 100 epochs, 
mean = 1.624, sd = .066) was better than performance on the dense neighbors (mean = 1.863, 
sd = .110). Recall that at this point, the network had been trained on just six sparse target 
words, and had not been exposed to any dense words (targets or neighbors), so it is not surpris-
ing that the networks performed better on the items they had been trained on, and more poorly 
on items they had not been exposed to at all.

After 1000 epochs of training (see Figure 8), when the networks had been exposed to all of the 
items, performance of the networks again showed an interaction between training regime and den-
sity, F (1, 18) = 423.953, p < .0001. In the dense-sparse training regime, performance on the dense 
neighbors remained better (mean = .899, sd = .046) than performance on the sparse neighbors 
(mean = 1.147, sd = .070). In contrast to the performance of the network on the targets after 1000 

Figure 6. Mean root-mean-square error after a total of 2000 epochs of training for the dense and sparse 
targets in the two training regimes. Performance was assessed after the networks had been exposed to all 
of the targets (by epoch 1000), and after an additional 1000 exposures.
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epochs, the network in the sparse-dense training regime continued to show better performance on 
the sparse neighbors (mean = .911, sd = .049) than the dense neighbors (mean = 1.079, sd = .032), 
F (1, 9) = 118.796, p < .0001. We believe this difference in performance between the targets and 
neighbors is again due to the difference in the number of words that sound similar to the targets and 
the number of words that sound similar to the neighbors (as discussed in Experiment 1).

Indeed, the continued advantage for sparse over dense neighbors in the sparse-dense training 
regime decreases with continued exposure to the word forms. At epoch 2000 (see Figure 9), per-
formance of the networks shows an interaction between training regime and density, F (1, 18) = 
83.911, p < .0001. In the dense-sparse training regime, performance on the dense neighbors 
remained better (mean = .735, sd = .071) than performance on the sparse neighbors (mean = .849, 
sd = .044), F (1, 9) = 61.787, p < .0001. In the sparse-dense training regime, performance on the 
sparse neighbors (mean = .746, sd = .058) also remained better than performance on the dense 

Figure 8. Mean root-mean-square error after 1000 epochs of training for the dense and sparse neighbors 
in the two training regimes.

Figure 7. Mean root-mean-square error after 100 epochs of training for the dense and sparse neighbors 
in the two training regimes.
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neighbors (mean = .806, sd = .034), F (1, 9) = 23.886, p < .001, in contrast to the pattern observed 
for the targets.

5.2.3 Generalization items. As with the targets and neighbors, a significant three-way interaction 
was found in the performance on the generalization items among the variables training regime, 
density, and epochs, F (1, 18) = 25.717, p < .0001. As above, to facilitate discussion, we will con-
sider the networks early in training (after being exposed to 100 training epochs, and only a portion 
of the input) and later in training (after being exposed to 1000 training epochs, and all of the input).

After 100 epochs of training (see Figure 10), a significant two-way interaction was observed 
between density and training regime, F (1, 18) = 286.598, p < .0001. In the dense-sparse train-
ing regime, performance on the sparse generalization items was poorer (mean = 1.919,  
sd = .049) than performance on the dense generalization items (mean = 1.532, sd = .066); recall 
that the network had not been exposed to any sparse targets or neighbors yet, however. In the 
sparse-dense training regime, performance on the sparse generalization items (for 100 epochs, 
mean = 1.699, sd = .051) was better than performance on the dense neighbors (mean = 1.842, 
sd = .080). Despite the limited exposure to targets and neighbors in each training regime, the 
network was able to extract and exploit relevant sub-patterns to more efficiently process the 
generalization items.

After 1000 epochs of training (see Figure 11), when the networks had been exposed to all of 
the items, performance of the networks again showed an interaction between training regime and 
density, F (1, 18) = 65.894, p < .0001. In the dense-sparse training regime, performance on the 
dense generalization items remained better (mean = 1.080, sd = .045) than performance on the 
sparse generalization items (mean = 1.274, sd = .079). In the sparse-dense training regime, per-
formance on the sparse generalization items remained better (mean = 1.125, sd = .064) than the 
performance on the dense generalization items (mean = 1.252, sd = .059).

Performance on the generalization items after 2000 epochs of training (i.e., an additional 1000 
exposures to all of the targets and neighbors) yielded a pattern of results that was a little different 
than the pattern of results obtained at 1000 epochs, F (1, 18) = 14.493, p < .01, as shown in Figure 
12. In the dense-sparse training regime, performance on the dense generalization items remained 

Figure 9. Mean root-mean-square error after a total of 2000 epochs of training for the dense and sparse 
neighbors in the two training regimes. Performance was assessed after the networks had been exposed to 
all of the words (by epoch 1000), and after an additional 1000 exposures.
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better (mean = .972, sd = .043) than performance on the sparse generalization items (mean = 1.087, 
sd = .049). However, in the sparse-dense training regime, performance on the dense generalization 
items (mean = 1.038, sd = .062) was now statistically equivalent to the performance on the sparse 
generalization items (mean = 1.016, sd = .058), F (1, 9) = .449, p = .52, not significant.

Although performance on the target words in the sparse-dense training regime had completely 
reversed from a performance advantage for the sparse targets to a performance advantage for the 
dense targets by this point in training, we did not observe such a dramatic change in the perfor-
mance for the neighbors and the (untrained) generalization items. Note, however, that performance 
on the dense and sparse neighbors, and the dense and sparse generalization items, did become more 
similar with additional exposure to the targets and neighbors. We predict that additional exposure 
in the sparse-dense training regime to the dense and sparse targets and neighbors would ultimately 
result in the predicted performance advantage for dense items over sparse.

Figure 10. Mean root-mean-square error after 100 epochs of training for the (untrained) dense and 
sparse generalization items in the two training regimes.

Figure 11. Mean root-mean-square error after 1000 epochs of training for the (untrained) dense and 
sparse generalization items in the two training regimes.
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Overall, the results of this experiment show a number of interesting points. Most obvious 
is the significant and long-lasting impact that initial input conditions have on the development 
of the lexicon and on subsequent lexical performance. Networks that were initially exposed to 
sparse followed by dense words (the sparse-dense training regime) developed a lexicon that 
was less sensitive to relevant sub-patterns in the input. Networks in this training regime were 
ultimately able to show a processing advantage for dense targets, but such an advantage was 
not observed for the dense neighbors. Furthermore, as evidenced in the performance on the 
generalization items, networks in the sparse-dense training regime did not exploit the knowl-
edge of relevant sub-patterns that had been extracted from the input to the same extent as 
networks that had been exposed to the same words in the dense-sparse training regime. The 
failure of networks in the sparse-dense training regime to learn and generalize lexical knowl-
edge was still evident even after additional training exposures (i.e., 1000 additional epochs of 
training on all of the targets and neighbors), suggesting that the (detrimental) influences of the 
initial input conditions on processing are also long lasting.

Although the results of the present experiment suggest that the initial input conditions have 
large and long-lasting effects on lexical processing, the present results also hint towards a method 
to alleviate some of the detrimental impacts that initial input conditions may have on subsequent 
processing. Consider the results for the dense targets in the sparse-dense training regime. Despite 
disadvantageous processing of the dense targets early on in this training regime, additional training 
(1000 more epochs) of the targets and neighbors ultimately showed the advantage for dense words 
that had been previously observed in human word-learners (e.g., Storkel et al., 2006) and in Exper-
iments 1–3. Granted, this processing advantage was not as large as the performance advantage 
observed in the targets in the dense-sparse training regime, but it nevertheless did emerge after 
additional training.

For the neighbors and generalization items, we did not observe a change in processing that was 
as dramatic as the change in processing observed in the target words. However, in the case of the 
generalization items in the sparse-dense training regime, delayed exposure to words with dense 
neighborhoods did result in the performance of the networks equaling that of the initially trained 

Figure 12. Mean root-mean-square error after a total of 2000 epochs of training for the (untrained) 
dense and sparse generalization items in the two training regimes. Performance was assessed after the 
networks had been exposed to all of the words (by epoch 1000), and after an additional 1000 exposures.
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sparse items. Perhaps even more training would have produced the processing advantage for the 
dense generalization items (and the neighbors as well).

We suspect that the failure of the neighbors and generalization items to produce the dramatic 
reversal in processing may have again been due (in part) to the difference in the number of words 
that are actually similar to the targets, neighbors, and generalization items (see the explanation in 
Section 2.2.1). Recall that each sparse target is phonologically similar to only one word (i.e., the 
neighbor), whereas each dense target is phonologically similar to nine neighbors. For the neigh-
bors, each sparse neighbor has only one word that is a phonologically similar neighbor to it (the 
sparse target), whereas each dense neighbor is similar to three words (two other neighbors and the 
target word). For the generalization items, each sparse generalization item is similar to only one 
item (the target), and each dense generalization item is similar to four words (the target word and 
only three of its neighbors). The difference in performance to the targets, neighbors, and generali-
zation items suggests that therapeutic interventions in humans that rely solely on increased expo-
sure might lead to learning of the words targeted in treatment, but may not lead to the extraction of 
relevant sub-patterns that are important for learning novel words. Given that most treatment 
approaches strive to affect change that extends beyond the specific items used in treatment, teach-
ing items from dense neighborhoods to increase the asymmetry between dense and sparse neigh-
borhoods could lead to the dense sub-patterns becoming more salient, thereby facilitating their 
extraction and use in learning novel word forms. Additional computational experiments and stud-
ies with human word-learners are required to test these predictions derived from the present study.

The detrimental and long-lasting impact of the initial input conditions observed in the present 
experiment also speaks to the utility of computational experiments. The stringent control over the 
input and the influence on lexical processing of one of the input conditions would have made it 
practically and ethically impossible to conduct a similar experiment with human language- 
learners. Our use of a computational model in this experiment enabled us to observe the effects of 
various initial input conditions on subsequent performance in silica, and to consider the implica-
tions for treatment should similar conditions of impoverished input be encountered in the clinical 
setting.

Finally, the results of the present experiment further suggest that the underlying mechanism 
employed in word learning is a “strengthening” of lexical representations by similar word forms. 
Despite what may have appeared initially in one case—the sparse-dense training regime—as an 
advantage for sparse items over dense items, and therefore as evidence for varying amounts of 
competition among lexical representations, the performance of the network on the generalization 
items raises some questions about such an account. Performance on all of the untrained generaliza-
tion items improved over time, even though the network had not been exposed to and trained on a 
specific neighbor of that item. This result suggests that a novel word form does not actually have 
to be a “member” of a specific phonological neighborhood to obtain some benefit from the known 
words in the lexicon. Rather, more general word knowledge can be extracted and exploited to 
facilitate the processing of novel word forms. It is not clear how performance on all of the untrained 
generalization items (even those without neighbors in the lexicon) would have improved over time 
if competition were the underlying mechanism in word learning, as has been proposed by others 
(e.g., Swingley & Aslin, 2007).

6 General discussion

Four computational experiments were reported in the present study. In Experiment 1 we exposed a 
multi-layered network to target words that differed in the number of phonological neighbors to 
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examine whether the similar-sounding words would facilitate the acquisition of the target words, 
leading to target words with more neighbors being learned better than target words with fewer 
neighbors, or whether the similar-sounding words would interfere with the acquisition of the target 
words, leading to target words with few neighbors being learned better than target words with more 
neighbors. The results of that experiment, as well as the experiments that followed, provided sev-
eral pieces of evidence that suggest that similar-sounding words facilitate the acquisition of target 
words, thereby giving us a computational mechanism for the verbal model proposed by Storkel  
et al. (2006; see also Jusczyk et al., 1994) for the acquisition of novel word forms. Experiment 2 
demonstrated that similar-sounding words strengthen the representations of target words, even 
when the network is gradually exposed to the words in the lexicon (rather than being trained on the 
words all at once, as in Experiment 1).

Satisfied that the computational model reasonably captured the important characteristics of the 
typical word-learner, we proceeded in Experiments 3 and 4 to explore the influence of two varia-
bles on word learning that could not be examined in real word-learners due to ethical and practical 
considerations. For example, in Experiment 3 we manipulated the number of hidden units in the 
model to examine how (perhaps innate) differences in processing resources might affect word 
learning. Finding a large enough sample of real word-learners that significantly differ in the amount 
of processing resources to examine this question is likely to be challenging, at best. When all other 
conditions are the same, networks with fewer processing resources required more training to reach 
comparable performance levels of networks with more processing resources. Interestingly, the 
networks with fewer processing resources did not adopt a different processing strategy to acquire 
the novel words. That is, all of the networks, regardless of the amount of available processing 
resources, showed an advantage in the acquisition of dense words over sparse words.

In Experiment 4, the networks were exposed to the same words in two different environments. 
In one condition, the networks were first exposed to sparse words until all of the sparse words had 
been added to the lexicon. The networks were then exposed to the dense words, until all of the 
words had been added to the lexicon. This condition was referred to as the sparse-dense training 
regime. In the other condition, the dense-sparse training regime, the networks were first exposed to 
all of the dense words, with the sparse words being added to the lexicon later on in the training set. 
Given the concern that the Sparse-Dense training regime might, in some way, adversely affect lexi-
cal development, carrying out such an experiment with real word-learners is, of course, ethically 
not possible. (The logistics of creating such highly controlled conditions in the environment also 
make this experiment impossible to carry out with real word-learners.) The results of this experi-
ment did indeed indicate that word-learning performance in the sparse-dense training regime 
lagged behind that in the dense-sparse training regime.

We do not believe that the results of Experiments 1–4 are unique to the architecture of or the 
learning algorithm employed in the networks used in the present study. Recall that the networks 
used in the present study had distributed representations, and that connection weights were adjusted 
with the back-propagation of error algorithm. Rather, we believe that the “strengthening” of lexical 
representations during word learning can be accomplished in a variety of connectionist networks, 
as well as in many other types of computational models.

Indeed, Page (2000) discussed how a localist neural network—where a single node is used to 
represent an entity (i.e., one node represents dog, another node represents shoe, etc.)—with a com-
petitive learning algorithm could also produce a learning advantage for novel words that are simi-
lar to many known words compared to novel words that are similar to few known words (see also 
Grossberg, 1972). When a novel word form is presented to the localist network, several uncommit-
ted nodes become partially activated by the input, and compete with each other to become the node 
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that will be committed to representing that input pattern (i.e., that word) in the future; this is known 
as a competitive learning algorithm. Each of these competing nodes will adapt the weights on the 
connections it receives from the input nodes in an attempt to better match the input pattern. Eventu-
ally, one node will match the input pattern better than the other competing nodes, and will become 
committed to representing that word.

The “losing” nodes remain uncommitted (i.e., they do not represent a known word), but because 
of the previous competition, their weights are in an excellent position to represent a new input pat-
tern that is similar to the previously learned input pattern. Thus, another novel input that is similar 
to many known words will benefit more from the connection weights that are predisposed (as a 
result of previous competitions among uncommitted nodes) to represent that new word than a 
novel input that is similar to few known words. Although the connectionist architecture and learn-
ing algorithm described by Page (2000) are different from those employed in the present experi-
ment, both models provide a more precise, mechanistic account of how the representation of a 
novel word might be “strengthened” by sounding similar to many (rather than few) known words.

As described by Lewandowsky (1993; see also Norris, 2005), computational models benefit 
researchers in several ways. For example, the computational model developed in the present 
study made explicit the mechanisms of word learning that were previously described only in 
verbal form (Jusczyk et al., 1994; Storkel et al., 2006). Other verbal descriptions of the mecha-
nisms that underlie various word-learning phenomena might also benefit from the process of 
developing a computational model. Furthermore, the model that we developed in the present 
study enabled us to explore the influence of variables and conditions that—for ethical and prac-
tical reasons—would be impossible to examine in real word-learners. The computational exper-
iments employed in the present study offer us a technique that can be used to further explore 
word learning that—in conjunction with psycholinguistic experiments—can greatly increase 
our understanding of this process.

These, as well as other reasons, speak to the important role that computational modeling and 
experimentation plays in increasing our understanding of language processing and language pro-
cessing disorders. Despite the simplicity of the model employed in the present computational 
experiments, it is important to keep in mind that:

[M]odels are not intended to capture fully the processes they attempt to elucidate. Rather, they are 
explorations of ideas about the nature of cognitive processes. In these explorations, simplification is 
essential—through simplification, the implications of the central ideas become more transparent. 
(McClelland, 2009, p. 11)

We believe the present simulations have greatly elucidated the manner in which neighborhood 
density influences the process of word learning.

Despite the simplicity of the network used in the present simulations, the results of these com-
putational experiments point to (at least) two topics worthy of further investigation either through 
computational or psycholinguistic experiments. The results of all of the present experiments sug-
gest that another level of representation may be necessary to account for the influence of segment 
frequency (as described in Note 2) on word learning. In addition, the results of Experiment 4 hint 
towards a method that might overcome the loss of plasticity in connection weights that occurs with 
increased training often observed in the type of network used in the present study. The improved 
performance of dense targets in the sparse-dense training regime suggests that items added later to 
the training set can still be acquired if those new items are similar to each other. Additional work 
is required to fully understand the novel observations derived from the simple model used in the 
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present study, and to explore the deeper implications of these observations for connectionist net-
works more generally.
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Notes
1. Neighborhood density refers to the number of words, or neighbors, that are phonologically similar to 

a target word. Phonological similarity is often defined operationally using an edit distance of one pho-
neme (Levenshtein, 1966). That is, a word is phonologically similar to a target word if that word can be 
formed by the substitution, addition, or deletion of a single phoneme in the target word (e.g., Greenberg 
& Jenkins, 1967; Landauer & Streeter, 1973; Luce & Pisoni, 1998). According to this definition, the 
words hat, cut, cap, scat, and _at can be considered phonologically similar to the word cat (cat has other 
words as neighbors, but only a few were listed for illustrative purposes). Similarity between words has 
also been defined using only substitutions (e.g., Vitevitch, 2002; orthographically see Davis et al., 2009), 
as well as other methods based on behavioral confusions of phonemes (see Luce & Pisoni, 1998). There 
is, of course, a strong correlation between the number of neighbors formed by the substitution, addition, 
or deletion metric and the substitution-only metric.

2. Given the number of stimuli that we created, the limited number of phonological segments in our inven-
tory, the constraint on word length, and the constraint that a word could not be the neighbor of more 
than one target word, it was inevitable that the frequency with which particular segments appeared in 
the words varied (perhaps analogous to phonotactic probability in real languages; Vitevitch & Luce, 
2005). For example, in the words in List A /p/ occurs in the onset position of trained items (targets and 
neighbors) a total of four times, whereas /v/ occurs in the onset position of trained items (targets and 
neighbors) a total of 11 times. Also, the frequency with which the segments occurred in dense and sparse 
trained items varied, such that a given segment tended to occur more often in sparse items than in dense 
items. Note that the trend for segment frequency leads to the prediction that if segment frequency causes 
a difference in the acquisition of words, then a learning advantage should be observed in the following 
simulations for sparse words over dense words (contrary to the prediction of the model proposed by 
Storkel et al., 2006).
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Appendix

List A Targets Neighbors Generalization items

 Conset Vowel Cfinal Conset Vowel Cfinal

Dense vot bot væt vop not vut vov
 dot vʊt vog  
 got vct vof  
 kɪp bɪp kip kɪm dɪp kep kɪd
 fɪp kɑp kɪv  
 nɪp kɛp kIb  
 mek vek muk met pek mɑk mef
 tek mok meb  
 dek mæk men  
Sparse vim dim pim  
 dɛn vɛn fɛn  
 kon ton pon  
 nɑb vɑb nib  
 biv miv bif
 fed fod fɑd  
 mʊg mɪg mɔg  
 tɔp tæp tʊp  
 gɔk gʊk kɔk  
 pɪt pɛt pɪf
 næv næm næf
 tum tuv tug
 pʊb pʊd pʊv
 guf gud kuf  
 bæg bæd beg  
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List B Targets Neighbors Generalization items

 Conset Vowel Cfinal Conset Vowel Cfinal

Dense vim pim vɑm vip gim vem vid
 fim vem vig  
 kim vIm vib  
 pɪt bɪt pɛt pɪk tɪt pɑt pɪv
 gɪt put pɪf  
 dɪt pct pɪn  
 næv mæv nʊv næd tæv nɛv næt
 fæv nov næk  
 dæv nev næm  
Sparse mʊg dʊg kUg  
 fed ped ted  
 guf nuf kuf  
 vot fot vʊt  
 gck vɔk gɔg
 tum tom tʊm  
 dɛn din dɑn  
 bæg bɛg beg  
 pʊb pæb fʊb  
 kɪp kɛp kɪb
 mek meb mep
 tcp tɔn tɔf
 biv bif bik
 kon kod mon  

 nɑb nap nɔb  




