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(/fʌ/ and /ʌl/) that co-occur often in the language, is 
said to have high phonotactic probability, whereas a 
word, like bag, or a non-word, like /∫ ʌt∫/, which con-
tain less common segments and sequences of seg-
ments that co-occur rarely in the language, is said to 
have low phonotactic probability.

Numerous studies have found that phonotactic 
probability influences various language processes: 
(1) word segmentation in infants (Mattys, Jusczyk, 
Luce, & Morgan, 1999), (2) the production of spoken 
words in adults (Goldrick & Larson, 2008; Vitevitch, 
Armbruster, & Chu, 2004), in children who stutter 
(Anderson & Byrd, 2008), in typically-developing 
children (Zamuner, Gerken, & Hammond, 2004) as 
well as the repetition accuracy in speakers with 
acquired output impairment after stroke (Lallini & 
Miller, 2011), (3) the recognition of words in adults 
with normal hearing and in adult users of cochlear 
implants (Vitevitch, Pisoni, Kirk, Hay-McCutcheon, 
& Yount, 2002), (4) word learning in typically- 
developing children (Storkel & Hoover, 2011), in 
children with Specific Language Impairment (SLI; 
Gray, Brinkley, & Svetina, 2012), in children with 
phonological delays (Storkel & Hoover, 2010b), in 
late talkers (MacRoy-Higgins, Schwartz, Shafer, &  

Introduction

Several decades ago, Cutler (1981) commented on 
the large number of factors that language scientists 
identified as influences on the production, recogni-
tion or acquisition of spoken words. These factors 
included, among others, semantic ambiguity of a 
word, number of meanings of a word, the length of 
the word, the stress-pattern of the word, concrete-
ness of the word, the age at which the word was first 
learned (Age of Acquisition; AoA), the frequency with 
which the word occurs in the ambient language 
(word-frequency), morphological complexity of the 
word and the recognition point of a word (i.e. the 
point in a word that it becomes unique from all other 
words in the lexicon). The number of factors that 
researchers have identified as influences on the pro-
duction, recognition or acquisition of words has only 
increased since that time and now includes phonot-
actic probability and neighbourhood density, in addition 
to many others.

Phonotactic probability refers to the frequency with 
which segments and sequences of segments occur in 
words (Vitevitch & Luce, 2005). A word, like back, 
or a non-word, like /fʌl/, which contain common  
segments (/f/, /ʌ/, /l/) and sequences of segments  
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Abstract
A number of variables—word frequency, word length—have long been known to influence language processing. This study 
briefly reviews the effects in speech perception and production of two more recently examined variables: phonotactic proba-
bility and neighbourhood density. It then describes a new approach to study language, network science, which is an interdis-
ciplinary field drawing from mathematics, computer science, physics and other disciplines. In this approach, nodes represent 
individual entities in a system (i.e. phonological word-forms in the lexicon), links between nodes represent relationships 
between nodes (i.e. phonological neighbours) and various measures enable researchers to assess the micro-level (i.e. the 
individual word), the macro-level (i.e. characteristics about the whole system) and the meso-level (i.e. how an individual fits 
into smaller sub-groups in the larger system). Although research on individual lexical characteristics such as word-frequency 
has increased understanding of language processing, these measures only assess the ‘micro-level’. Using network science, 
researchers can examine words at various levels in the system and how each word relates to the many other words stored in 
the lexicon. Several new findings using the network science approach are summarized to illustrate how this approach can be 
used to advance basic research as well as clinical practice.

Keywords: Adults, children, psycholinguistic
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14  M. S. Vitevitch & N. Castro 

Marton, 2013), and in adults (Storkel, Armbrüster, 
& Hogan, 2006) and (5) the conjugation of verbs  
in children with SLI (Leonard, Davis, & Deevy, 
2007).

Phonotactic probability has also been implicated 
in memory for non-words (Gathercole, Frankish, 
Pickering, & Peaker, 1999; Messer, Leseman, Boom, 
& Mayo, 2010) and in literacy-related skills, as in chil-
dren learning to spell (Apel, Wolter, & Masterson, 
2006) and as evidenced by differences in processing 
stimuli that vary in phonotactic probability in chil-
dren and adults with dyslexia (Bonte, Poelmans, & 
Blomert, 2007; Noordenbos, Segers, Mitterer, Ser-
niclaes, & Verhoeven, 2013). Finally, both electro- 
and magneto-physiological components have been 
identified for the processing of stimuli that vary in 
phonotactic probability (Hunter, 2013; Pylkkänen, 
Stringfellow, & Marantz, 2002).

Neighbourhood density refers to the number of 
words that sound like a target word. A word is said 
to be a phonological neighbour of a target word if 
the substitution, addition or deletion of a single pho-
neme in any position in that word converts it to the 
target word (e.g. Greenberg & Jenkins, 1964; 
Landauer & Streeter, 1973; Luce & Pisoni, 1998). 
For example, the words hat, cut, cap, scat and_at are 
considered neighbours of the word cat (cat has other 
words as neighbours, but only a few were listed for 
illustrative purposes). A word with many phonologi-
cal neighbours is said to have a dense neighbour-
hood, whereas a word with few phonological 
neighbours is said to have a sparse neighbourhood.

Numerous studies have found that neighbourhood 
density influences various language processes: (1) 
the acquisition of sounds in children (Gierut,  
Morrisette, & Champion, 1999), (2) the acquisition 
of words in children (Storkel, 2004) and in second 
language learners (Stamer & Vitevitch, 2012; see also 
computational work in Vitevitch & Storkel, 2013), 
(3) spoken word recognition in young adults with no 
history of speech, language or hearing impairment 
in English and in Spanish (Luce & Pisoni, 1998; see 
also Vitevitch, 2002; Vitevitch & Luce 1998, 1999; 
Vitevitch & Rodriguez, 2005), in older adults with 
no history of speech, language or hearing impair-
ment (e.g. Sommers, 1996) and in post-lingually 
deafened adults who had a cochlear implant (Kaiser, 
Kirk, Lachs, & Pisoni, 2003), as well as the recogni-
tion of accented speech (Chan & Vitevitch, in press; 
Imai, Walley, & Flege, 2005), (4) spoken word produc-
tion in children who stutter (Arnold, Conture, & 
Ohde, 2005), in young adults with fluent speech in 
English and in Spanish (Munson & Solomon, 2004; 
Vitevitch, 1997, 2002; Vitevitch & Stamer, 2006), in 
older adults with fluent speech (Vitevitch & Som-
mers, 2003), in individuals with aphasia (Gordon, 
2002) and even (5) reading by young adults with no 
history of speech, language or hearing impairment 
(Yates, Locker, & Simpson, 2004). For a more com-
plete review of how neighbourhood density and pho-

notactic probability influence the perception and 
production of spoken words, see Vitevitch and Luce 
(2016).

In working with various colleagues investigating 
how phonotactic probability and neighbourhood 
density influence the production and recognition of 
spoken words we observed several interesting rela-
tionships. One observation was that words (or non-
words) comprised of common segments and 
sequences of segments tended to be similar to many 
words in the language. That is, a word or non-word 
with high phonotactic probability tends to have a 
dense phonological neighbourhood. The relationship 
that we observed between phonotactic probability 
and neighbourhood density was easily quantified and 
captured in the statistically significant positive cor-
relation between phonotactic probability and neigh-
bourhood density (Vitevitch, Luce, Pisoni, & Auer, 
1999); see Storkel and Lee (2011) for an attempt to 
dissociate the influence of these two variables.

Additional observations that were made, but at the 
time could not be quantified so easily, were that: (1) 
a phonological neighbor of one word was also a pho-
nological neighbour of other words and (2) some 
words had phonological neighbours that tended to 
be neighbours just with that specific word, whereas 
other words had phonological neighbours that were 
also neighbours with other neighbours of that word. 
With the emergence of the field now known as  
Network Science (Newman, 2010), a suite of mathe-
matical tools that could be used to quantify these 
and other relationships among phonological word-
forms in the mental lexicon came to our attention. 
Several studies, briefly summarized in what follows, 
demonstrate that the way in which phonological 
word-forms are organized in the mental lexicon 
influences lexical processes such as the production, 
recognition and acquisition of spoken words.

The focus on the overall structure of the lexicon 
differs from a more mainstream psycholinguistic 
approach, which tends to focus on characteristics of 
an individual word—including phonotactic probabil-
ity and neighbourhood density, as well as many of 
the variables described by Cutler (1981)—for an 
explanation of why some words are processed differ-
ently from others. What is most striking about the 
studies reviewed below is that these measures of indi-
vidual words were controlled in the studies described 
below, thereby providing clear evidence that differ-
ences in the structural organization of words in the 
lexicon influence various lexical processes.

What is network science?

Network science draws on techniques used in math-
ematics, sociology, computer science, physics and a 
number of other fields to examine complex systems. 
What makes complex systems interesting to study is 
that the ‘whole’ is often ‘greater than the sum of its 
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parts’, meaning that the interaction among entities 
in the system leads to system-wide behaviours that 
cannot be predicted from the local interaction that 
occurs between two adjacent entities. This holistic 
approach contrasts with the reductionist approach 
typically employed in contemporary psycholinguis-
tics (and science in general) in which characteristics 
of individual entities—such as how frequent a word 
occurs in the ambient language—are believed to 
influence processing in the system. Therefore, these 
network science measures may capture important 
interactions among words that might be useful for 
understanding processing in the mental lexicon and 
for the development of language interventions.

One way to model a complex system is to use nodes 
(sometimes called vertices) to represent individual 
entities in the system and connections to represent rela-
tionships between entities in the system (the terms 
edges, directed edges or arcs are sometime used for con-
nections that indicate a relationship in one direction, 
such as predator–prey relationships). When assem-
bled, the nodes and connections of a system form a 
web-like structure or network (sometimes called a 
graph) to represent the entire system. As noted above, 
there are a number of disciplines that contribute to 
Network Science. One discipline tends to use one set 
of terms, whereas another discipline will use the other 
set of terms to refer to the same concepts. In the 
present case, we will use the terms: node, connection 
and network (see Supplementary Appendix to be 
found online at http://informahealthcare.com/doi/
abs/10.3109/17549507.2014.987819–Key Terms for 
definitions of the terms that we introduce in what 
follows).

The network approach has been used to examine 
complex systems in economical, biological, social 
and technological domains (Barabási, 2009). An 
intuitive example of network analysis and its applica-
tion is found in the social domain (i.e. a social net-
work) in which nodes represent members of a street 
gang and connections are placed between gang 
members who participate together in gang-related 
activities, such as distributing illegal drugs. Law 
enforcement officers employing network analysis 
techniques could identify members of the gang who 
are the biggest suppliers of drugs to the other gang-
members (e.g. which node directly connects to the 
most nodes in the system) and try to turn that gang 
member into a confidential informant, thereby pro-
viding law enforcement officers with important 
updates on the use and distribution of drugs. Alter-
natively, law enforcement officers could ‘remove’ 
that individual from the network by arresting that 
individual. Such an action could maximally disrupt 
the distribution of illegal drugs by the gang (until 
another gang member steps-in to fill that recently 
vacated role).

These same analysis techniques can be used to 
model the species in an eco-system, with connec-
tions indicating which species prey upon other  

species (Montoya & Solé, 2002). Removal of a node 
in this case is equivalent to a species going extinct. 
Determining the broader and indirect effects on the 
ecosystem of one vs another species going extinct 
could provide invaluable information for individuals 
engaged in conservation efforts to decide where to 
best direct their limited resources.

More relevant to the language sciences, this 
approach has been used to examine connectivity in 
the brain (Sporns, 2010) and the cognitive processes 
and representations involved in semantic memory 
(Hills, Maouene, Maouene, Sheya, & Smith, 2009; 
Steyvers & Tenenbaum, 2005). In the research sum-
marized here, we will focus on a network of phono-
logical word-forms in the mental lexicon. We will also 
discuss other ways to use network science to study 
language and to provide clinical insight.

Network science and the phonological lexicon

Vitevitch (2008) applied the tools of network science 
to the mental lexicon by creating a network with  
∼ 20,000 English words represented as nodes1 and 
connections placed between words that were phono-
logically similar. To operationally define ‘phonologi-
cally similar’, a commonly used metric was employed 
(i.e. the one-phoneme metric used in Luce & Pisoni, 
1998). In the present case two words were connected 
if the addition, deletion or substitution of a phoneme 
in one word formed the other word. For example, the 
nodes for cat /kæt/ and bat/bæt/ would be connected 
(the underlined phonemes indicate where in the 
words the changed phoneme occurred). Figure 1 
shows a small portion of this network.

Analysis of the whole network revealed several 
noteworthy characteristics about the structure of 
the mental lexicon. (The reader is encouraged to 
consult the sources cited herein, as well as other 
sources for more technical definitions of the various 
network measures that are described here.) Vite-
vitch (2008) found that the phonological network 
had a large group of nodes that were highly con-
nected to each other (known as the giant compo-
nent), as well as many smaller groups of words that 
were connected to each other, but not to the giant 
component. Such items are referred to in the net-
work science literature as smaller components, but 
Vitevitch (2008) adopted the term ‘lexical islands’ 
to describe such groupings in the mental lexicon. 
An example of a lexical island is the component that 
Vitevitch (2008) referred to as the ‘island of  
the shunned’, because words in that component 
contained the sequence of segments /∫ ʌn/, such as 
faction, fiction and fission. Vitevitch (2008) further 
observed that the lexical network contained many 
words that did not have any phonological neigh-
bours. An individual node that is not connected to 
any other nodes is known as an isolate in the net-
work science literature, but Vitevitch adopted the 
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16  M. S. Vitevitch & N. Castro 

term ‘lexical hermits’ to describe such words in the 
mental lexicon.

Vitevitch (2008) further examined the giant 
component and found that it exhibited small-
world characteristics (Watts & Strogatz, 1998).  
A network is said to exhibit small-world character-
istics if it has a ‘short’ average path length (meaning 
that, on average, one can get from one randomly 
selected node to another randomly selected  
node in the network by traversing a small number 
of connections) and, relative to what would be 
expected, a high clustering coefficient. The cluster-
ing coefficient measures the extent to which the 
neighbours of a given node are also neighbours  
of each other (see Watts & Strogatz, 1998, for a 
more quantitative definition). Consider the word 
dog in Figure 1, which has as neighbours the words 
dawn, dug, dig, log, fog, hog and bog, many of which 
are also neighbours with each other (such as log– 
fog, hog–bog, etc.). In a small-world network, a 
node tends to have more neighbours being neigh-
bours with each other than would be expected by 
chance, where ‘chance’ is determined by creating 
a network of similar size but with connections 
between nodes placed randomly rather than based 
on the relationships that occur in the system being 
examined.

Arbesman, Strogatz, and Vitevitch (2010) found 
similar structural features in phonological networks 
of Spanish, Mandarin, Hawaiian and Basque. Find-
ing similar network features across these languages 
was somewhat surprising given the numerous differ-
ences among the languages that were sampled in 
characteristics like the typical length of a word, the 

phoneme inventories, etc. and the different ‘families’ 
from which the languages were sampled. For exam-
ple, English is from the Germanic branch of Indo-
European languages, whereas Spanish is from the 
Romance branch of Indo-European languages. 
Mandarin, is not only a Sino-Tibetan language, but 
it further differs from English, Spanish, Hawaiian 
and Basque in that it uses tones to convey word 
meanings (note, tone was not represented in the 
phonological network, however). Hawaiian is an 
Austronesian language with a phoneme inventory 
that is smaller than the inventories found in English, 
Spanish, Mandarin and Basque. Finally, Basque is 
a linguistic isolate or not known to be related to any 
other language.

Observing the same characteristics in the pho-
nological network of a number of different lan-
guages suggests that the network of phonological 
word-forms might be capturing important aspects 
of the structure of the mental lexicon or of lan-
guage more generally. One of the fundamental 
assumptions of network science is that the struc-
ture of a network influences the dynamics of that 
system (Watts & Strogatz, 1998). That is, a certain 
process might operate very efficiently on a network 
that is structured in one way. However, in a net-
work with the same number of nodes and the same 
number of connections—but with those nodes 
connected in a slightly different way—the same 
process might now be very inefficient. Given the 
fundamental assumption that the structure of a 
network influences the dynamics of that system, 
several colleagues and I (as described below) began 
to investigate how the structure among phonologi-

Figure 1. A small portion of the network examined in Vitevitch (2008). Each word is, of course, connected to other words in the lexicon, 
but only a few words are displayed here for the sake of image clarity. See additional discussion in the text for illustrations of certain 
network science concepts.
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 Using network science in the language sciences and clinic   17

cal word-forms in the mental lexicon might influ-
ence various language-related processes.

How lexical structure influences lexical 
processing

One important measure of network structure is 
degree, which refers to the number of connections 
that a node has. In the network of phonological 
word-forms examined by Vitevitch (2008), degree 
corresponds to the more familiar term from psycho-
linguistics: neighbourhood density. Thus, a word with 
a dense neighbourhood would be represented in the 
network as a node (or phonological word-form) that 
is connected to many other nodes/phonological 
word-forms (such as the word cat in Figure 1), 
whereas a word with a sparse neighbourhood would 
be represented in the network as a node that is con-
nected to few other nodes/phonological word-forms 
(such as the word dog in Figure 1). Given the exten-
sive research on the influence of neighbourhood den-
sity on a variety of language-related processes 
(summarized above) we were encouraged to look for 
other measures of network structure that might also 
influence language processing in some way.

Our initial exploration began with the clustering 
coefficient, which measures the proportion of phono-
logical neighbours of a word that are also phonologi-
cal neighbours with each other. This network science 
measure provided us with a way to quantify one of 
the observations noted above: some words had pho-
nological neighbours that tended to be neighbours 
just with that specific word, whereas other words had 
phonological neighbours that were also neighbours 
with other neighbours of a word. Thus, the clustering 
coefficient provided us with a long-sought-after way 
to measure more precisely the ‘internal structure’ of 
a phonological neighbourhood.

The clustering coefficient may appear conceptu-
ally similar to phonological neighbourhood density/
degree, but it is important to note that they are, by 
definition, different measures. Furthermore, as 
shown in Chan and Vitevitch (2010), the clustering 
coefficient of over 6000 words in the lexicon (with 
two or more neighbours, which is the minimum 
number of neighbours required to compute cluster-
ing coefficient), was not significantly correlated with 
the neighbourhood density/degree of those words 
(see also Vitevitch, Chan, & Roodenrys, 2012).

Chan and Vitevitch (2009) found that words that 
were similar in neighbourhood density/degree, but 
varied in clustering coefficient, were responded to 
differentially in several conventional psycholinguistic 
tasks. That is, words with low clustering coefficient 
(the neighbours of a target word tended to be neigh-
bours only with the target word and not with other 
neighbours) were responded to in a perceptual iden-
tification task and a lexical decision task more quickly 
and accurately than words with high clustering  

coefficient (many of the neighbours of a target word 
were also neighbours with each other).

Furthermore, Chan and Vitevitch (2009) found 
that computer simulations of widely-accepted models 
of spoken word recognition were not able to account 
for the influence of clustering coefficient on spoken 
word recognition, suggesting that the structure of the 
lexicon, as measured by the clustering coefficient, may 
influence spoken word recognition. Although widely-
accepted models of spoken word recognition were not 
able to account for the influence of clustering coeffi-
cient on spoken word recognition, Vitevitch, Ercal, 
and Adagarla (2011) demonstrated with computer 
simulations that the diffusion of activation across a 
network model could account for the influence of 
clustering coefficient on spoken word recognition. 
Subsequent research has found that the clustering 
coefficient also influences the production of spoken 
words (Chan & Vitevitch, 2010), certain aspects of 
short-term and long-term memory for words (Vite-
vitch et al., 2012) and the acquisition of novel word-
forms (Goldstein & Vitevitch, 2014).

Additional studies have examined how other struc-
tures observed in the lexical network—including 
path-length, mixing pattern, the existence of com-
munities and keyplayers in the network—might 
influence language-related processes. Path-length 
refers to the number of connections that must be 
traversed to get from one node/word to another. For 
example, in the network in Figure 1, the path-length 
between dog and bog is one connection, whereas the 
(shortest) path between the words dog and cat is four. 
Vitevitch, Goldstein, and Johnson (in press) analysed 
responses in a phonological associates task (the par-
ticipant hears a word and says the first word that 
comes to mind that ‘sounds like’ that word) to exam-
ine how path length might influence what is per-
ceived when a word is perceived erroneously.

Although participants were not given a precise 
definition of what it means for two words to ‘sound 
like’ each other, Vitevitch et al. found that over 80% 
of the responses differed from the target word by a 
single phoneme. For example, if the participant 
heard the word dog, they were likely to respond with 
bog or dig. More interesting, over 95% of the 
responses that differed from the target word by more 
than a single phoneme had a path that connected the 
target word to the more distant response, such as 
being presented with dog and responding with bag 
(see Figure 1). The existence of lexical intermediar-
ies between the target word and more distant 
responses raises some concerns about measures of 
word-form similarity that ignore such items, such as 
the Orthographic Levenshtein Distance-20 (OLD-20; 
Yarkoni, Balota, & Yap, 2008) and the Phonological 
Levenshtein Distance-20 (PLD-20; Suárez, Tan, Yap, 
& Goh, 2011). Computations of OLD-20/PLD-20  
do not consider whether real-word intermediaries 
exist or not; the measure only considers the number 
of letter/phoneme changes, respectively, that are 
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connected nodes are targeted for removal the net-
work falls apart, thereby disrupting processing in 
that system (e.g. Albert, Jeong, & Barabási, 2000; 
Newman, 2002). In contrast, Arbesman et al. 
observed similar and high levels of resilience in con-
nectivity in the phonological network when either a 
random attack or an attack targeting highly con-
nected nodes was carried out. The resilience of pho-
nological networks with assortative mixing by degree 
observed in the computer simulations of Arbesman 
et al (2010) made us wonder how network organiza-
tion might contribute to the ‘resilience’ of language 
processing more broadly.

Vitevitch, Chan, and Goldstein (2014) reasoned 
that, if assortative mixing by degree contributes to 
the ‘resilience’ of language processing, then they 
should be able to find behavioural evidence for 
assortative mixing by degree in instances when lex-
ical retrieval failed. Recall that in the phonological 
network degree corresponds to the psycholinguistic 
term, phonological neighbourhood density. There-
fore, when lexical retrieval fails the neighbourhood 
density/degree of the word that is erroneously 
retrieved should be correlated to the neighbourhood 
density/degree of the word that was correctly pro-
duced. Vitevitch et al. analysed a corpus of slips-of-
the-ear or speech errors in which the speaker 
produces an utterance correctly, but the listener 
‘mishears’ what is said. They found a significant, 
positive correlation in the neighbourhood density/
degree of the words that were produced and the 
neighbourhood density/degree of the words that 
were ‘misheard’ by the listener, indicating that assor-
tative mixing by degree might have behavioural con-
sequences for certain aspects of language 
processing.

To further examine how assortative mixing by 
degree might influence language processing, Vite-
vitch et al. (2014) simulated ‘failed’ lexical retrieval 
in a computer model of spoken word recognition and 
also in three psycholinguistics tasks that approxi-
mated, in a laboratory setting, failed lexical retrieval. 
Vitevitch et al. again found behavioural evidence for 
assortative mixing by degree; that is, a significant, 
positive correlation in the neighbourhood density/
degree of the words that were presented to partici-
pants and the neighbourhood density/degree of the 
words that were given in response. The results of 
these studies on the network science metric known 
as assortative mixing by degree further suggest that 
the way word-forms are organized in the mental 
lexicon influences certain aspects of language pro-
cessing.

Together these studies illustrate that network sci-
ence consists of techniques and measurements that 
can be used to examine a system at multiple levels. 
At the micro-level, one can examine the characteris-
tics of an individual node in the system and perhaps 
the nodes immediately connected to that individual 
in the system. Thus, the studies that examined the 

required to turn one word into another. However, 
the findings of Vitevitch et al. show that distant pho-
nological neighbours tend to be connected to a word 
via a path of real words, raising questions about the 
psychological validity of metrics such as OLD-20 
and PLD-20 that do not take into account the exis-
tence of lexical intermediaries.

The mixing pattern of a network refers to a general 
tendency for how nodes in a network connect to each 
other (i.e. how entities in the system tend to mix 
together). In a social network, mixing might be 
defined based on the age of the individuals, resulting 
in the observation that people in the network tend to 
have as friends people that are comparable in age.

Mixing, however, can be defined on a variety of 
other characteristics, including the number of con-
nections that a node has (i.e. degree). If nodes with 
many connections tend to connect to other nodes 
that also have many connections—there is an overall 
positive correlation in the degree of two connected 
nodes—it is said that the network exhibits assortative 
mixing by degree. If nodes with many connections 
tend to connect to other nodes that have few connec-
tions—there is an overall negative correlation in the 
degree of two connected nodes—it is said that the 
network exhibits disassortative mixing by degree. If 
there is no correlation in the degree of two connected 
nodes, then there is no observable mixing pattern.

In their analysis of the network structure of several 
different languages, Arbesman et al. (2010) found 
relatively high values of assortative mixing by degree 
(0.5–0.8 in the languages examined by Arbesman 
et al., whereas 0.1–0.3 is typically observed in social 
networks). The observation of assortative mixing by 
degree in phonological networks is interesting 
because mathematical simulations of networks with 
different mixing patterns suggest that the overall pat-
tern of mixing exhibited in a network has implica-
tions for the ability of the system to maintain 
processing in the face of damage to the network. 
Newman (2002) found that removing nodes with a 
high-degree in networks with disassortative mixing 
by degree greatly disrupted the ability to traverse a 
path from one node to another node in the system 
(known as network connectivity). In contrast, net-
work connectivity was not disrupted as much when 
high-degree nodes were removed from a network 
with assortative mixing by degree. In other words, 
networks with assortative mixing by degree are able 
to remain relatively connected in the face of targeted 
attacks to the system.

In addition to measuring the extent to which the 
phonological networks exhibited assortative mixing 
by degree, Arbesman et al. (2010) used the method 
employed by Newman (2002) to examine the resil-
ience of the English network by targeting for removal 
either highly connected nodes or randomly selected 
nodes. What is typically observed in other domains 
is that the network remains relatively well connected 
when nodes are attacked at random, but when highly 
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influence of degree and clustering coefficient on 
lexical processing can be categorized as having exam-
ined the influence of the micro-structure of the lex-
icon on processing. At the macro-level, one examines 
the characteristics of the whole system by calculating 
the average value of a particular measure or by mea-
suring a characteristic that describes a general ten-
dency in the system. Thus, the studies that examined 
the influence of mixing (i.e. assortative mixing by 
degree) and path length on lexical processing can be 
categorized as having examined the influence of the 
macro-structure of the lexicon on processing.

In between the micro- and macro-levels lies the 
meso-level, where one can examine characteristics of 
groups or sub-sets of nodes that might be found in 
the system. A common technique used to examine 
the meso-level is community detection or attempting to 
find smaller sub-groups of nodes, called communities. 
Nodes within a given community tend to be more 
connected to each other than to nodes found in 
another community. Consider the neighbours of the 
word cat in Figure 1: cot, cut, coat, kit and kite might 
form one community, cad, calf, cab and can might 
form another community and chat, that, hat, rat, gnat 
and fat might form yet another community.

Using a common community detection algorithm, 
Siew (2013) found 17 communities of various sizes 
in the phonological network examined in Vitevitch 
(2008). Siew suggested that the presence of com-
munity structure in the lexical network might con-
tribute to the rapidity of word recognition by 
restricting activation to a relatively small sub-set of 
lexical candidates (i.e. the words in the community) 
instead of allowing activation to spread rampantly to 
the entire lexicon.

Implications of network science for speech 
and language disorders

The studies reviewed above looked at a variety of 
network measures and their influence on lexical pro-
cessing in typically-developing college-age adults. 
Despite the—at present—limited application of net-
work science to the language sciences (for reviews see: 
Baronchelli, Ferrer i Cancho, Pastor-Satorras, Chater, 
& Christiansen, 2013; Cong & Liu, 2014), we believe 
there is much promise for the application of network 
science, especially for increasing our understanding 
of language development and our understanding of 
and ability to treat language disorders.

One network measure that might have fairly direct 
application to clinical practice is that of keyplayers in 
the network. Keyplayers are nodes in a network that, 
when removed, result in the network fracturing into 
several smaller components (see Borgatti (2006) for 
the algorithm used to find such nodes, as well as for 
information about software that will find such nodes 
in a network). In Figure 1, if the word bag (and its 
connections) were removed from the network, two 

smaller components would be obtained: dog and its 
neighbours and cat and its neighbours, with no way 
to get from dog to cat. Vitevitch and Goldstein (2014) 
extracted a set of 25 words that held such ‘key’ posi-
tions in the larger phonological network (e.g. bring, 
fish, misty) and a set of 25 foil words (e.g. brief, firm, 
mystic) that were comparable to the ‘keywords’ on a 
number of lexical and network characteristics. They 
found that keywords were responded to more quickly 
and accurately than the foils in a perceptual identi-
fication task, an auditory naming task and an audi-
tory lexical decision task, showing that the position 
of words in the phonological network plays an impor-
tant role in the processing of those words.

Given the important role that ‘keywords’ in the 
network play in processing, one might attempt to 
introduce keywords at a developmentally appropri-
ate time during the acquisition of a first or second 
language to accelerate or otherwise facilitate the 
acquisition of new words. Similarly, in individuals 
with acquired language disorders, including various 
types of aphasia, treatments that focus on the re-
acquisition or rehabilitation of such keywords could 
facilitate language recovery. Additional analyses, 
simulations and empirical investigations are required, 
however, to verify what is at present optimistic spec-
ulation.

Work by Beckage, Smith, and Hills (2011) illus-
trates more directly how the principles and analytic 
techniques of network science can be used to increase 
our understanding of certain language disorders. Note 
that their analysis was of a lexical network in which 
the connections between words represented semantic 
similarity, instead of phonological similarity as in most 
of the studies described here. In their analysis, Beck-
age et al. (2011) made semantic networks for a group 
of typically-developing children and for a group of 
‘late talking’ children, who had vocabularies (obtained 
from the Communicative Development Inventories 
(CDI), Dale & Fenson, 1996) that were smaller than 
most children at that age (15–36 months).

Beckage et al. (2011) observed that the networks 
for the typically-developing children had a higher 
clustering coefficient, a shorter path-length and 
greater average degree compared to the networks for 
the late-talking children (specifically for directed 
links coming ‘into’ the node, known as in-degree; see 
Supplementary Appendix to be found online at 
http://informahealthcare.com/doi/abs/10.3109/ 
17549507.2014.987819–Key Terms for a definition 
of in-degree). In other words, the extent to which a 
child’s vocabulary resembled a small-world network 
was related to the child’s rate of vocabulary develop-
ment, such that children who developed a vocabu-
lary at the typical pace exhibited networks with 
small-world characteristics, whereas late-talkers 
showed the small-world characteristics to a lesser 
extent. The small-world network structure is known 
to contribute to rapid search (Kleinberg, 2000). It is 
perhaps not a coincidence that deviations from this 
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network structure were observed in the lexical net-
work of late-talking individuals.

Beckage et al. (2011) suggested that the small-
world-like structure observed in the semantic lexicon 
of typically-developing children likely arises from the 
biases in word acquisition identified (via network 
analyses) in Hills et al. (2009, 2010). However, late-
talking children may instead show a preference for 
new words that are semantically novel compared to 
what is already known; they refer to such words as 
‘oddballs’. For example, late-talking children may be 
more likely to acquire the word telephone than dog 
after learning the word cat, because telephone is less 
semantically similar to the already known word cat.2

The work by Beckage et al. (2011) and by Hills 
et al. (2009, 2010) on the acquisition of semantic 
information in the mental lexicon nicely illustrates 
how network analyses can be useful for shedding light 
on the processes that influence typical, disordered 
and delayed development (see also Kenett, Wechsler-
Kashi, Kenett, Schwartz, Ben-Jacob, & Faust, 2013). 
In what follows we show how network analyses might 
also be useful for examining language processes at 
the other end of the developmental spectrum, namely 
in adults with either Broca’s or Wernicke’s aphasia.

Analysis of performance in the Philadelphia 
Naming Test

In this section we report the results of an analysis of 
data obtained from a database (freely available on-line) 
of various tests of cognitive function performed by 
individuals with various types of aphasia and by age-
matched controls (Mirman, Strauss, Brecher, Walker, 
Sobel, Dell, et al., 2010). We examined some well-
known linguistic variables in this analysis in order to 
replicate the results of previous studies of speech pro-
duction. The replication of previous well-known results 
in this set of data would bolster our confidence in any 
novel results we might obtain as we explore how other 
network science measures that we have not examined 
previously might influence speech production.

We downloaded from the Moss Aphasia Psycholin-
guistics Project Database: http://mrri.org/mappd 
(accessed March 2014) the accuracy results of the 175 
items in the Philadelphia Naming Test (PNT) for age-
matched controls (n  20), individuals with Broca’s 
Aphasia (n  58) and individuals with Wernicke’s 
Aphasia (n  36). A binomial multiple regression model 
was used to predict the odds of naming a picture cor-
rectly. Table I lists each variable that we examined, the 
beta coefficient (in log odds units) and the coefficient 
in odds units (calculated by taking the exponent of the 
beta coefficient). All analyses discussed below were 
significant at p  0.001, indicating that a particular 
variable influences the likelihood of accurately naming 
a picture when all other variables are controlled.

Not surprising, the odds of accurately naming a 
picture in the PNT was influenced by the type of 

individual (i.e. Wernicke’s Aphasia, Broca’s Aphasia 
or age-matched control). The odds of correctly nam-
ing a picture for those with Wernicke’s aphasia was 
0.015-times the odds for healthy controls and the 
odds of correctly naming a picture for those with 
Broca’s aphasia was 0.024-times the odds for healthy 
controls. In other words, healthy controls named 
roughly 67 pictures correctly for every one picture 
named correctly by an individual with Wernicke’s 
aphasia and healthy controls named roughly 42 pic-
tures correctly for every one picture named correctly 
by an individual with Broca’s aphasia.

It is also not surprising that over time as individu-
als recover from the incident that led to either Wer-
nicke’s or Broca’s Aphasia, that performance on 
cognitive tasks, like the PNT, improve (at least some-
what). In the present analysis we found that, for 
every month post-onset, the odds of correctly nam-
ing a picture was 1.003 or an increase in accuracy of 
0.3% each month.

It has long been known that the length of a word 
(measured in various ways, including the number of 
syllables in the word, the number of letters in the 
word or the number of phonemes in the word) influ-
ences the likelihood of accurately producing a word 
(e.g. Hodgson & Ellis, 1998; Meyer, Roelofs, & Lev-
elt, 2003; Santiago, MacKay, Palma, & Rho, 2000). 
For example, Bricker, Schuell, and Jenkins (1964) 
found that individuals with aphasia (type was not 
specified) made more errors spelling longer words 
than shorter words. In the present analysis we found 
that, as the length of the word (measured by the 
number of phonemes) increased, the odds of cor-
rectly naming a picture was 0.823 or a decrease in 
accuracy of roughly 18%, replicating the well-attested 
influence of word-length on speech production.

It is also well-known that the frequency with which 
a word occurs in the language influences how quickly 

Table I. Analysis of performance in the Philadelphia Naming 
Test.

Variable
Beta coefficient 
(log odds unit)

Coefficient 
(odds unit)

Intercept 4.382 79.99
Wernicke’s Aphasia 4.183 0.015
Broca’s Aphasia 3.727 0.024
Months Post-Onset 0.003 1.003
Word length 0.195 0.823
Word Frequency 0.313 1.368
Degree/neighbourhood density 0.437 1.548
Closeness Centrality 5.144 0.006
Component 0.720 2.054

 Wernicke’s Aphasia is in comparison to age-matched controls. 
Broca’s Aphasia is in comparison to age-matched controls. Word 
length was centred at one phoneme. Word frequency counts came 
from Kučera and Francis (1967; we added 1 to each value and 
then performed a log10 transformation). For degree/neighbourhood 
density, we added 1 to each value and performed a log10 
transformation, because, as observed in Vitevitch (2008), degree/
neighbourhood density is not normally distributed. For the 
Component, words in the giant component were coded as 0, words 
outside of the giant component were coded as 1.
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and accurately it is perceived or produced (e.g. 
Howes, 1957). Specifically, words that are common 
in the language tend to be produced and perceived 
more quickly and accurately than words that are 
used less often. In our analysis of data from the PNT, 
we found that, as the frequency of the word increases, 
the odds of correctly naming a picture was 1.368 or 
an increase of roughly 37%, replicating another well-
attested influence on speech production.

Another effect that was replicated in the present set 
of data was the influence of neighbourhood density on 
speech production (e.g. Goldrick & Rapp, 2007; Har-
ley & Bown, 1998; Vitevitch, 1997, 2002; Vitevitch & 
Sommers, 2003). Recall that neighbourhood density 
refers to the number of words that sound like a target 
word. In a network representation of phonological 
word-forms in the lexicon, the term degree refers to 
the number of connections incident to a node; in other 
words, how many words sound similar to that word. 
Because the psycholinguistic term neighbourhood 
density and the network science term degree both 
refer to the same concept we will use the combined 
term degree/neighbourhood density. As in previous 
studies of speech production we found in the present 
set of data that as the degree/neighbourhood density 
of a word increased, the odds of correctly naming a 
picture was 1.548 or an increase of roughly 55%.

Replicating several well-known and previously 
observed effects in the present set of data bolsters 
our confidence that any new effects of network vari-
ables that have not been extensively explored in psy-
cholinguistics that we may presently observe are not 
spurious. One network variable we wish to explore 
in the present data is closeness centrality, which mea-
sures the distance from one node to all other nodes 
in the network (following the shortest path between 
any two nodes being considered). A node might, 
therefore, be considered ‘important’ if it is relatively 
close to all other nodes in the system. More precisely, 
closeness centrality is defined as:

C
d v uv

u V


1

( , )
∈∑

 (1)

where d(v,u) refers to the shortest distance (i.e. 
shortest path) between nodes v and u, ∑ refers to the 
sum of the path lengths from node v to all other 
nodes in the network.

As indicated in equation (1), closeness centrality is 
typically reported as the inverse of the distance from 
a node to every other node in the network. Therefore, 
a node that has high closeness centrality, a value close 
to 1, tends to be close to the other nodes in the net-
work (meaning that one can get from that node to 
other nodes in the network by traversing relatively 
few connections). Conversely, a node that has low 
closeness centrality, a value close to 0, tends to be far 
away from the other nodes in the network (meaning 
that one must traverse many connections to get from 
that node to the other nodes in the network).

Iyengar, Madhavan, Zweig, and Natarajan (2012) 
demonstrated the influence of closeness centrality on 
language-related processing using a game called 
word-morph, in which participants were given a 
word and asked to form a disparate word by chang-
ing one letter at a time. For example, asked to ‘morph’ 
the word bay into the word egg, participants might 
have changed bay into bad-bid-aid-add-ado-ago-ego 
and finally into egg. (See Figure 1 for a way to morph 
the word dog into the word cat.) Once participants 
in this task identified certain ‘landmark’ words in the 
network of orthographically similar words—words 
that had high closeness centrality, like the word aid 
in the example above—the task of navigating from 
one word to another became trivial, enabling the par-
ticipants to solve subsequent word-morph puzzles 
very quickly. The time it took to find a solution 
dropped from 10–18 minutes in the first 10 games, 
to ∼ 2 minutes after playing 15 games, to ∼ 30 sec-
onds after playing 28 games, because participants 
would ‘morph’ the start-word (e.g. bay) into one of 
the landmark words that were high in closeness cen-
trality (e.g. aid), then morph the landmark-word into 
the desired end-word (e.g. egg). Although this task is 
a contrived word-game rather than a conventional 
psycholinguistic task that assesses on-line lexical pro-
cessing, the results of Iyengar et al. (2012) neverthe-
less illustrate how the tools of network science can 
be used to provide insights about linguistic represen-
tations and how the organization of those representa-
tions might influence processing.

In the present analysis of picture naming data from 
the PNT we observed that, as closeness centrality 
increased, the odds of correctly naming a picture was 
0.006. That is, words that are close to all of the other 
words in the lexicon are named less accurately than 
words that are far away from all of the other words 
in the lexicon. Although this result may appear to 
contradict the findings reported by Iyengar et al. 
(2012), that is not the case. Recall that Iyengar et al. 
found that words with high closeness centrality proved 
to be very useful in the word-morph game. The 
demands of this off-line, language game are quite dif-
ferent from the demands of a confrontation naming-
task (a.k.a. picture- or object-naming), such as that 
found in the PNT. In the word-morph game, being 
close to other words in the lexicon can help one 
quickly transform one word into another, leading to 
successful performance in the game. However, when 
the task is to retrieve from the lexicon a specific word, 
as in a picture-naming task, being close to all of the 
other words in the lexicon could lead to competition 
among candidate word-forms or to activation being 
diverted away from the target word-form to all of the 
other nearby word-forms, thereby decreasing the 
likelihood of successfully retrieving target words that 
have high closeness centrality. Given the different 
demands of the word-morph game and the picture-
naming task, the present results do not necessarily 
contradict the findings from Iyengar et al. (2012).
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The present findings regarding closeness centrality 
may also appear to contradict the well-attested findings 
regarding degree/neighbourhood density that were rep-
licated in the present analysis: English words with 
many phonological neighbours are named more accu-
rately than English words with few phonological neigh-
bours (e.g. Goldrick & Rapp, 2007; Harley & Bown, 
1998; Vitevitch, 1997, 2002; Vitevitch & Sommers, 
2003). Computer simulations (e.g. Dell & Gordon, 
2003; Gordon & Dell, 2001) further demonstrated that 
‘phonological neighbours’ or words that differed from 
the target word by one phoneme played a facilitative 
role in retrieving a word-form from the lexicon, such 
that words with more neighbours were retrieved more 
accurately than words with few neighbours.

However, recent simulations looking at what might 
be described as ‘distant neighbours’ suggests that 
items that are less similar to a target word can exert a 
different influence on lexical retrieval than ‘near’ 
neighbours (Mirman & Magnuson, 2008). Therefore, 
it is not unreasonable for degree/neighbourhood den-
sity, which measures ‘near’ neighbours, to exert one 
type of influence on lexical retrieval and closeness cen-
trality, which measures ‘distant’ neighbours, to exert 
a different kind of influence on lexical retrieval.

The replication of several well-studied effects in 
the present analysis boosts our confidence regarding 
the novel influence observed for closeness centrality 
on speech production. The work of Iyengar et al. 
(2012) as well as the present findings regarding 
closeness centrality point to a network characteristic 
that may warrant further investigation by language 
scientists and speech-language pathologists.

Another network variable that may warrant further 
investigation by language scientists is where in the 
network a word resides. Recall that Vitevitch (2008) 
found that the phonological network of English had 
a large group of nodes that were highly connected to 
each other (i.e. the giant component), as well as 
many smaller groups of words that were connected 
to each other, but not to the giant component (i.e. 
smaller components or ‘lexical islands’) and many 
words that did not have any phonological neighbours 
at all (i.e. isolates, ‘lexical hermits’). Further recall 
that Arbesman et al. (2010) found, across a handful 
of languages, that the giant component contained 
from 34% (English) to 66% (Mandarin) of the words 
in the lexicon, leaving a large proportion of words in 
either the lexical islands or as hermits. In most sys-
tems examined in network science, ∼ 90% of the 
nodes are found in the giant component. The smaller 
proportion of nodes found in the giant component 
in phonological networks compared to other types of 
networks points to a characteristic that may warrant 
further investigation.

In the present analysis we examined whether a 
word located in the giant component (coded as 0 in 
the present analysis) might be processed differently 
than a word found outside of the giant component 
(coded as 1 in the present analysis; we did not dis-

tinguish between words in smaller components and 
isolates in this analysis). In the picture naming data 
from the PNT we observed that the odds of correctly 
naming a picture was 2.05-times greater for words 
not in the giant component. That is, words found 
outside of the giant component were named more 
accurately than words in the giant component (see 
also Siew & Vitevitch, 2014).

The present finding regarding more accurate nam-
ing of words found outside of the giant component 
is intriguing, because Siew (2013) observed that 
giant component words tend to be short, monosyl-
labic words, whereas lexical island words tend to be 
long, multisyllabic words. Given the well-known 
relationship between word frequency and word 
length—commonly used words tend to be short 
words and less commonly used words tend to be 
longer words (Zipf, 1935)—and the well-known 
influences of word frequency and of word-length on 
lexical retrieval (described above and replicated in 
this set of data), one might expect the words in the 
giant component to be named more accurately than 
words outside of the giant component. Recall, how-
ever, that in the binomial multiple regression tech-
nique used in the present analysis all other variables 
are controlled. Finding an influence of location in 
the phonological network when those other variables 
(e.g. word length, word frequency) are controlled 
points to another network characteristic that may 
warrant further investigation by language scientists 
(see Siew & Vitevitch, 2014 for a possible account 
of this finding).

Conclusion

In the present review we briefly summarized a large 
body of research looking at individual lexical char-
acteristics, focusing specifically on phonotactic prob-
ability and neighbourhood density. We proceeded to 
introduce the emerging field of network science and 
illustrated how the computational tools of network 
science could be used to examine individual lexical 
characteristics (i.e. the micro-level), overall character-
istics of a system (i.e. the macro-level), as well as char-
acteristics of sub-sets of items (i.e. the meso-level) in 
the context of the phonological lexicon. The results 
of the studies that we summarized showed that more 
than just individual lexical characteristics influence 
processing. Rather, the structure of the lexicon at the 
micro-, meso- and macro-level influences various 
aspects of lexical processing.

Furthermore, we analysed data from an on-line 
database of the Philadelphia Naming Test to show the 
utility of network science for increasing our under-
standing of language processing at other points in the 
lifespan. A number of well-known findings were rep-
licated and several novel influences of network sci-
ence measures on lexical processing were also 
observed, pointing toward new avenues for research. 
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person vary widely, this sample is believed to 
be sufficiently representative.
Interestingly, such an ‘oddball’ strategy may 2. 
be advantageous for triggering the acquisi-
tion of novel phonological word-forms in 
typically-developing individuals (Storkel, 
2011). That is, novel words that are phono-
logically less similar to other known words 
can be more easily identified as a novel word 
to which resources should be allocated in 
order to acquire it. Novel words that are 
phonologically similar to many known words 
may be erroneously identified as an already 
known word, thereby delaying the acquisi-
tion of that novel word (in typically-develop-
ing individuals)
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