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Previous network analyses of the phonological lexicon (Vitevitch,
2008) observed a web-like structure that exhibited assortative
mixing by degree: words with dense phonological neighborhoods
tend to have as neighbors words that also have dense phonological
neighborhoods, and words with sparse phonological neighbor-
hoods tend to have as neighbors words that also have sparse pho-
nological neighborhoods. Given the role that assortative mixing by
degree plays in network resilience, we examined instances of real
and simulated lexical retrieval failures in computer simulations,
analysis of a slips-of-the-ear corpus, and three psycholinguistic
experiments for evidence of this network characteristic in human
behavior. The results of the various analyses support the hypothe-
sis that the structure of words in the mental lexicon influences lex-
ical processing. The implications of network science for current
models of spoken word recognition, language processing, and cog-
nitive psychology more generally are discussed.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Network science draws on work from mathematics, sociology, computer science, physics and a
number of other fields that examine complex systems using nodes (or vertices) to represent individual
entities, and connections (or edges) to represent relationships between entities, to form a web-like
structure, or network, of the entire system. This approach has been used to examine complex systems
in economical, biological, social, and technological domains (Barabási, 2009). More relevant to the cog-
nitive sciences, this approach has also increased our understanding of connectivity in the brain
ersity of
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(Sporns, 2010), the categorization of psychological disorders (Cramer, Waldorp, van der Maas, & Bors-
boom, 2010), and the cognitive processes and representations involved in human navigation (Iyengar,
Madhavan, Zweig, & Natarajan, 2012), semantic memory (Griffiths, Steyvers, & Firl, 2007; Hills, Mao-
uene, Maouene, Sheya, & Smith, 2009; Steyvers & Tenenbaum, 2005), and human collective behavior
(Goldstone, Roberts, & Gureckis, 2008).

Cognitive science has appealed to networks in the past, including artificial neural networks (Rosen-
blatt, 1958), networks of semantic memory (Quillian, 1967), and network-like models of language
(e.g., linguistic nections: Lamb, 1970; Node Structure Theory: MacKay, 1992). What separates network
science from these previous network approaches is that network science is equal parts theory and
equal parts methodology: ‘‘. . .networks offer both a theoretical framework for understanding the
world and a methodology for using this framework to collect data, test hypotheses, and draw conclu-
sions’’ (Neal, 2013, p. 5). Regarding methodology, network science offers a wide array of statistical and
computational tools to analyze individual agents in a complex system (often referred to as the micro-
level), characteristics of the over-all structure of a system (often referred to as the macro-level), as well
as various levels in between (often referred to as the meso-level). See Appendix A for definitions of var-
ious network measures that can be used to assess the different levels of a system.

One could argue, without oversimplifying the case, that psycholinguistic research has predomi-
nantly engaged in micro-level analyses to identify specific lexical characteristics—such as word fre-
quency, age of acquisition, word length, phonotactic probability, etc.—that affect the speed and
accuracy with which a word can be retrieved from the lexicon. Indeed, Cutler (1981) provided a long
list of lexical characteristics that were known to affect the retrieval of a word; this list has only grown
since then (e.g., Vitevitch, 2002a; Vitevitch, 2007). Although much has been learned about the micro-
structure of words in the mental lexicon, what was not known then—and is still missing in main-
stream approaches—is an understanding of how the macro-structure and meso-structure of the lexi-
con influences lexical processing. Stated more brusquely: studying the individual pieces does not help
us understand how they all fit together, nor how the entire system works as a whole (for a similar cri-
tique of reductionism in other fields see Barabási, 2012).

To better understand the complex cognitive system known as the mental lexicon, we used the
mathematical tools of network science to examine how the mental lexicon might be structured at
the macro-level, and how the macro-structure of the lexicon might influence lexical processing. To
be sure, psycholinguists have hinted at the influence that the structure of the lexicon might have
on lexical processing. Consider this statement by Forster (1978, p. 3): ‘‘[a] structured information-re-
trieval system permits speakers to recognize words in their language effortlessly and easily’’ as well as
the verbal model of lexical retrieval that he proposed.

Also consider this statement by Luce and Pisoni (1998, p. 1): ‘‘. . .similarity relations among the
sound patterns of spoken words represent one of the earliest stages at which the structural organiza-
tion of the lexicon comes into play.’’ What was missing, however, were the right tools to measure the
structure of the lexicon. Statements by Barabási suggest that the tools of network science are ideally
suited to examine the micro-, meso- and macro-structure of the mental lexicon, as well as other com-
plex systems:

All systems perceived to be complex, from the cell to the Internet and from social to economic sys-
tems, consist of an extraordinarily large number of components that interact via intricate networks.
To be sure, we were aware of these networks before. Yet, only recently have we acquired the data
and tools to probe their topology, helping us realize that the underlying connectivity has such a
strong impact on a system’s behavior that no approach to complex systems can succeed unless
it exploits the network topology. (Barabási, 2009, p. 413)

Vitevitch (2008) applied the tools of network science to the mental lexicon by creating a network
with approximately 20,000 English words as nodes, and connections between words that were pho-
nologically similar (using the one-phoneme metric used in Luce and Pisoni (1998)). Fig. 1 shows a
small portion of this network (see Hills et al. (2009) and Steyvers and Tenenbaum (2005) for lexical
networks based on semantic rather than phonological relationships among words).

Network analyses of the English phonological network revealed several noteworthy characteristics
about the macro-structure of the mental lexicon. Vitevitch (2008) found that the phonological



Fig. 1. A sample of words from the phonological network analyzed in Vitevitch (2008). The word ‘‘speech’’ and its phonological
neighbors (i.e., words that differ by the addition, deletion or substitution of a phoneme) are shown. The phonological neighbors
of those neighbors (i.e., the 2-hop neighborhood of ‘‘speech’’) are also shown.
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network had: (1) a large highly interconnected component, as well as many islands (words that were
related to each other—such as faction, fiction, and fission—but not to other words in the large compo-
nent) and many hermits, or words with no neighbors (known as isolates in the network science liter-
ature); the largest component exhibited (2) small-world characteristics (‘‘short’’ average path length
and, relative to a random graph, a high clustering coefficient; Watts & Strogatz, 1998), (3) assortative
mixing by degree (a word with many neighbors tends to have neighbors that also have many
neighbors; Newman, 2002), and (4) a degree distribution that deviated from a power-law.

Arbesman, Strogatz, and Vitevitch (2010b) found the same constellation of structural features in
phonological networks of Spanish, Mandarin, Hawaiian, and Basque, and elaborated on the signifi-
cance of these characteristics. For example, the giant component of the phonological networks con-
tained, in some cases, less than 50% of the nodes; networks observed in other domains often have
giant components that contain 80–90% of the nodes. Arbesman et al. (2010b) also noted that assorta-
tive mixing by degree is found in networks in other domains. However, typical values for assortative
mixing by degree in social networks range from .1–.3, whereas the phonological networks examined
by Arbesman et al. were as high as .7.

Finally, most of the languages examined by Arbesman et al. exhibited degree distributions fit by
truncated power-laws (but the degree distribution for Mandarin was better fit by an exponential func-
tion). Networks with degree distributions that follow a power-law are known as scale-free networks.
Scale-free networks have attracted attention because of certain structural and dynamic properties,
such as remaining relatively intact in the face of random failures in the system, but vulnerability when
attacks are targeted at well-connected nodes (Albert & Barabási, 2002; Albert, Jeong, & Barabási, 2000).
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See work by Amaral, Scala, Barthélémy, and Stanley (2000) for the implications on the dynamic prop-
erties of networks with degree distributions that deviate from a power-law in certain ways.

It is important to note that Kello and Beltz (2009) demonstrated that certain characteristics they
observed in the networks of several real languages (English, Dutch, German, Russian, and Spanish)
were unlikely to arise simply because connections between nodes were based on substring relations
(like the one-phoneme metric used to connect nodes in the networks examined in Vitevitch (2008)
and Arbesman, Strogatz, and Vitevitch (2010a, 2010b)). Kello and Beltz used methods like those used
by Mandelbrot (1953) and Miller (1957) to create variable-length random letter strings, and found
that the degree distribution of a network comprised of such overlapping items differed radically from
the degree distribution of the networks containing words from real languages.

Similarly, Gruenenfelder and Pisoni (2009) created three pseudolexicons of randomly generated
‘‘words.’’ Only the pseudolexicon that contained items that closely resembled real-words in natural
languages—words that varied in length, the proportions of words at a given length that matched those
proportions found in English, phonotactic-like constraints on the ordering of consonants and vowels in
the words—produced a network structure that began to resemble the network structure observed in
natural languages. Thus, networks of word-forms from natural languages capture important informa-
tion at the micro- meso- and macro-levels about the structural relations among those word-forms
above and beyond what might be expected from a network formed from nodes that simply share over-
lapping features.

One of the fundamental assumptions of network science is that the structure of a network influ-
ences the dynamics of that system (Watts & Strogatz, 1998). A certain process might operate very
efficiently on a network with a certain structure. However, in a network with the same number of
nodes and same number of connections—but with those nodes connected in a slightly different
way—the same process might now be woefully inefficient. Given the fundamental assumption that
the structure of a network influences the dynamics of that system, then the structure among phono-
logical word-forms in the mental lexicon observed by Vitevitch (2008) should influence certain lan-
guage-related processes. Indeed, psycholinguistic evidence demonstrates that three network
features at the micro-level of the network—degree, clustering coefficient, and closeness centrality of
individual words—influence a number of language-related processes.

Degree refers to the number of connections incident to a given node. In the context of a phonolog-
ical network like that of Vitevitch (2008), degree corresponds to the number of word-forms that sound
similar to a given word. Many psycholinguistic studies have shown that degree—better known in the
psycholinguistic literature as phonological neighborhood density—influences spoken word recognition
(Luce & Pisoni, 1998), spoken word production (Vitevitch, 2002b), word-learning (Charles-Luce & Luce,
1990; Storkel, 2004), and phonological short-term memory (Roodenrys, Hulme, Lethbridge, Hinton, &
Nimmo, 2002). Our discussion of degree is not meant to suggest that our use of network science to
examine the mental lexicon led us to discover something new (i.e., the already well-known effects
of phonological neighborhood density on processing). Rather, we discuss degree and neighborhood
density to show an interesting point of convergence between conventional psycholinguistics and net-
work science. This conceptual convergence inspired us to examine how other network science mea-
sures of the structure of the mental lexicon might influence various language-related processes.

One of those other network science measures is the clustering coefficient, which—in the context of a
phonological network like that in Vitevitch (2008)—measures the extent to which the neighbors of a
given node are also neighbors of each other. We initially explored the influence of the clustering coef-
ficient on processing because it provides a measure of the ‘‘internal structure’’ of a phonological neigh-
borhood. When clustering coefficient is low, few of the neighbors of a target node are neighbors of
each other. When clustering coefficient is high, many neighbors of a target word are also neighbors
with each other. Given the well-known and widely replicated effects of degree/neighborhood density,
we reasoned that we would likely be able to observe influences of the internal structure of a
phonological neighborhood on processing. Indeed, the results of several studies—using a variety of
conventional psycholinguistic and memory tasks, as well as computer simulations—demonstrated
that clustering coefficient influences language-related processes like spoken word recognition, word
production, retrieval from long-term memory, and redintegration in short-term memory (Chan &
Vitevitch, 2009, 2010; Vitevitch, Chan, & Roodenrys, 2012; Vitevitch, Ercal, & Adagarla, 2011).
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Although degree/neighborhood density and clustering coefficient are conceptually similar, it is
important to note that they are, by definition, distinct concepts. Furthermore, Vitevitch et al. (2012)
demonstrated that degree and clustering coefficient are not correlated in the phonological network
of English. Moreover, Vitevitch et al. (2011) observed in a computer simulation independent effects
of degree/neighborhood density and of clustering coefficient on the diffusion of activation in their net-
work representation of the lexicon.

Using a game called word-morph, in which participants were given a word, and asked to form a
disparate word by changing one letter at a time, Iyengar et al. (2012) demonstrated the influence of
another network science measure—closeness centrality—on a language-related process. Closeness cen-
trality is one type of centrality measure (others being degree centrality, betweenness centrality, reach
centrality, and eigenvector centrality) that attempts to capture in some way which nodes are ‘‘impor-
tant’’ in the network. Closeness centrality assesses how far away other nodes in the network are from a
given node.1 A node with high closeness centrality is very close to many other nodes in the network,
requiring that, on average, only a few links be traversed to reach another node. A node with low close-
ness centrality is, on average, far away from other nodes in the network, requiring the traversal of many
links to reach another node.

Iyengar et al. (2012) found that words with high closeness centrality in a network of the orthographic
lexicon allowed participants in the word-morph game to quickly transform one word into another. For
example, asked to ‘‘morph’’ the word bay into the word egg participants might have changed bay into
bad–bid–aid–add–ado–ago–ego and finally into egg. Similarly, when asked to ‘‘morph’’ the word ass into
the word ear participants might have changed ass into ask–ark–arm–aim–aid–bid–bad–bar and finally
into ear. Once participants in this task identified certain ‘‘landmark’’ words in the lexicon—words that
had high closeness centrality, like the word aid in the examples above—the task of navigating from
one word to another became trivial, enabling the participants to solve subsequent word-morph puzzles
very quickly. The time it took to find a solution dropped from 10–18 min in the first 10 games, to about
2 min after playing 15 games, to about 30 s after playing 28 games, because participants would ‘‘morph’’
the start-word (e.g., bay or ass) into one of the landmark words that were high in closeness centrality
(e.g., aid), then morph the landmark-word into the desired end-word (e.g., egg or ear). Although this task
is a contrived word-game rather than a conventional psycholinguistic task that assesses on-line lexical
processing, the results of Iyengar et al. (2012) nevertheless illustrate further how the tools of network
science can be used to provide insights about cognitive processes and representations.

Our review of previous studies that examined how degree, clustering coefficient, and closeness
centrality influence various language-related processes clearly shows that the tools of network science
can be used to provide novel insights about cognitive processes and representations. Note, however,
that these metrics assess the micro-level of a system, providing information about individual nodes
rather than the system as a whole. Therefore, one could argue that these applications of network sci-
ence to psycholinguistics are also guilty of the charge we leveled against mainstream psycholinguistic
research: the myopic focus of mainstream psycholinguistics on the trees (i.e., individual characteris-
tics of words) has prevented mainstream psycholinguistics from seeing the forest (i.e., the mental lex-
icon as a system). To illustrate further how the tools of network science can be used to provide novel
insights about cognitive processes and representations (and to acquit ourselves of this crime of per-
spective), we examined in the present study how the macro-level measure from network science
known as assortative mixing by degree might influence language-related processing.

To define assortative mixing by degree we will consider each component of this term in turn. Mixing
describes a preference for how nodes in a network tend to connect to each other. This preference can
be based on a variety of characteristics. For example in a social network, mixing may occur based on
age, gender, race, etc. Assortative mixing (a.k.a. homophily) means that ‘‘like goes with like.’’ Again
1 Closeness centrality is defined as the inverse of the sum of distances from that node to all other reachable nodes in the
network. More precisely:

ClosenessðiÞ ¼ 1X
j
dij

where i is the node of interest, j is another node in the network, and dij is the shortest distance between these two nodes.
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using the example of a social network, people of similar age tend to connect to each other. There are, of
course, instances in which younger people are friends with older people, but overall there is a general
tendency in the network for people of similar ages to be connected. Assortative mixing can be con-
trasted with disassortative mixing, which means that dissimilar entities will tend to be connected.
For example, in a network of a heterosexual dating website, males and females would be connected,
but not males and males, nor females and females. It is also possible that no mixing preferences are
exhibited in a network.

In addition to gender or age, degree, or the number of edges incident on a vertex, is another way in
which nodes in a network may exhibit a preference for mixing. Therefore, assortative mixing by de-
gree refers to the tendency in a network for a highly connected node to be connected to other highly
connected nodes (Newman, 2002). In other words, when looking at the network overall, there is a po-
sitive correlation between the degree of a node and the degree of its neighbors. Assortative mixing by
degree is often observed in social networks (Newman, 2002). Note that a negative correlation between
the degree of a node and the degree of its neighbors is also possible, and is known as disassortative
mixing by degree. Disassortative mixing by degree is often found in networks representing technolog-
ical systems, like the World Wide Web (Newman, 2002). Networks with a correlation of zero between
the degree of a node and the degree of its neighbors are also possible, and also have been observed
(Newman, 2002).

The relatively high values of assortative mixing by degree in the phonological networks examined
by Arbesman et al. (2010b)—values as high as .7 compared to values ranging from .1-.3 in social net-
works—demand additional investigation. One possibility is that the values observed by Arbesman
et al. are just a statistical quirk or a mathematical curiosity. Indeed, there are many interesting rela-
tionships and correlations that have been observed among words or in language more generally. Con-
sider Menzerath’s law, which states that the larger a particular unit is, the smaller its constituents will
be, such that a long word will be comprised of small or simple syllables (such as CVs or Vs), whereas a
short word will be comprised of a large or more complex syllable (such as CCCVCCC as in the
monosyllabic word, strengths). The relationship between unit and constituent size known as
Menzerath’s law is not only observed in language, but has also been observed in music and genomes
(Ferrer-i-Cancho, Forns, Hernandez-Fernandez, Bel-Enguix, & Baixeries, 2012).

Consider also Martin’s Law (the relationship between the number of definitions of a word and the
generality of those definitions), as well as the relationship between phoneme inventory and entropy,
and the relationship between polysemy and word length. Finally, consider the numerous observations
by Zipf (1935), including the correlation between word-length and word frequency (long words tend
to occur less often in the language; see also Baayen, 1991, 2001, 2010), and the observation that high
frequency words tend to have many phonological neighbors (e.g., Frauenfelder, Baayen, Hellwig, &
Schreuder, 1993; Landauer & Streeter, 1973). Given the plethora of relationships observed among
words and in language more generally (and sometimes even in other domains), the observation of
assortative mixing by degree in Arbesman et al. (2010b) could simply be another statistical curiosity.

We grant that it is interesting to discover and document the presence of such relationships in and
across languages. We further grant that much has been learned by studying how the variables that
contribute to those relationships influence processing. Consider all of the work investigating the influ-
ence of word frequency on various language and memory processes (dating back at least to Lester,
1922), studies of word-length on processing (e.g., Vitevitch, Stamer, & Sereno, 2008), all of the work
on orthographic and phonological neighborhood density on processing (e.g., Laxon, Coltheart, &
Keating, 1988; Pisoni, Nusbaum, Luce, & Slowiaczek, 1985), and the work on neighborhood frequency
on processing (e.g., Grainger, O’Regan, Jacobs, & Segui, 1989). What appears to be lacking are studies
that demonstrate that relationships between variables—such as the observation that high frequency
words tend to have many phonological neighbors (e.g., Frauenfelder et al., 1993; Landauer & Streeter,
1973)—directly influence processing. From the perspective of cognitive psychology, it is important to
demonstrate that statistical relationships between variables are more than interesting mathematical
quirks. That is, one must demonstrate that such statistical relationships influence cognitive processing
in some way. In the work that follows, we will examine how the macro-level measure of a network
known as assortative mixing by degree might influence certain aspects of language related processing.
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Note that there have been many studies on Menzerath’s law, Martin’s law, and other relation-
ships among words in the language, such as the general relationships observed about word fre-
quency (e.g., Baayen, 1991, 2001, 2010; Zipf, 1935), but most of the previous studies of these
statistical relationships attempted to determine the origin of the global pattern observed in the
language. To be clear, the goal of the present work is not to determine the origin of assortative
mixing by degree in the phonological lexicon, or to propose a model that could generate such a
macro-level pattern in the language (for such work see the stochastic model described in Baayen
(1991)). Instead, we take the observations of Arbesman et al. (2010b) as a given: assortative mix-
ing by degree exists in the mental lexicon. The goal of the present research is to determine if this
statistical relationship observed at the macro-level of the lexicon influences cognitive processing in
some way.

Furthermore, given the work of Keller (2005) and others, we caution against the practice of ‘‘in-
verse inference,’’ that is, inferring from an observed pattern in the data back to the model that
might have generated it. Keller (2005) criticized the once-common practice in network science
of observing a power-law degree distribution (N.B. Zipfian distributions of word frequency follow
a power law) and then inferring that the network was generated by a particular mechanism (i.e.,
growth with preferential attachment in the case of scale-free networks). To illustrate the problems
of inversely inferring the mechanism that produced the observed distribution, Keller discussed the
work of Herbert Simon and a number of others that shows that such power-law distributions can
be produced by a large number of algorithms/mechanisms. Given that there are often many ways
to produce a particular pattern in the data, and often no way to discern which of those mecha-
nisms is actually responsible for the observed data, the field of network science has essentially
abandoned the practice of inferring the generating mechanism when a scale-free degree distribu-
tion is observed.

Again, regardless of how assortative mixing by degree came to be in the lexicon, the goal of the
present research is to determine if this statistical relationship observed at the macro-level of the lex-
icon influences cognitive processing in some way. We begin by considering how the pattern of mixing
influences processing in other domains. Mathematical simulations suggest that the overall pattern of
mixing exhibited in a network has implications for the ability of the system to maintain processing in
the face of damage to the network, a concept somewhat reminiscent of graceful degradation in
cognitive science. Newman (2002) found that network connectivity (i.e., the existence of paths be-
tween pairs of nodes) was easier to disrupt (by a factor of five to ten) by removing nodes with
high-degree in networks with disassortative mixing than in networks with assortative mixing by
degree. In other words, networks with assortative mixing by degree are better able to maintain pro-
cessing pathways than networks with disassortative mixing by degree in the face of targeted attacks
to the system.

More directly related to language, Arbesman et al. (2010b) examined network resilience in re-
sponse to simulated attacks on nodes in a network of English words. Recall that English and a variety
of other languages exhibited relatively high values of assortative mixing by degree (.5–.8 in the lan-
guage networks examined by Arbesman et al., whereas .1–.3 is typically observed in social networks).
Arbesman et al. observed similar and high levels of resilience in connectivity in the language network
when either a random attack or an attack targeting highly connected nodes was carried out. This pat-
tern of network resiliency differs from that typically seen in other networks, which tend to be resilient
to random attacks on the network, but eventually succumb to failure when highly connected nodes
are targeted for removal (e.g., Albert et al., 2000; Newman, 2002). Given the high levels of assortative
mixing by degree, and high levels of resiliency to both random and targeted attacks observed in the
language networks examined by Arbesman et al. (2010b), it is not unreasonable to suggest that the
assortative mixing by degree found in the mental lexicon may contribute to the resilience of some lan-
guage-related processes.

While it is unclear what the equivalent of a targeted attack on a phonological network might be in
real-life, or how a word (i.e., node) could be permanently removed from the network, there are in-
stances, as in the tip-of-the-tongue phenomenon (e.g., Brown & McNeill, 1966) and in certain forms
of aphasia, in which words are temporarily ‘‘unavailable’’ during lexical retrieval. Given the influence
that assortative mixing by degree has in maintaining network integrity, and the large values of
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assortative mixing by degree observed in several languages, we reasoned that the influence that
assortative mixing by degree might have on lexical processing might be more easily observed when
lexical retrieval failed.

Examining the influence of assortative mixing by degree during failed lexical retrieval comple-
ments previous studies that examined the influence of other network characteristics on processing
in a number of ways. First, previous studies focused on micro-level measures of the network (e.g., de-
gree, clustering coefficient, closeness centrality of individual nodes), whereas the present study fo-
cuses on the macro-level characteristic of mixing. Second, previous studies focused predominantly
on quickly retrieving (or navigating to) a desired lexical item, whereas in the present study we focus
on instances of failed lexical retrieval (a topic that is, as described below, relatively less examined in
psycholinguistics). Finally, previous studies and network analyses have, in many cases, simply re-
ported statistical measures of the network or the language in general. In the present case, we, like a
few notable exceptions in the previous literature, are examining how an observed structure in the
mental lexicon might influence cognitive processing (see Borge-Holthoefer and Arenas (2010) for
the importance of tying measures of language networks to cognitive processing).

Investigations of various types of lexical retrieval failures in the area of speech production—such as
slips of the tongue, malapropisms, and tip-of-the-tongue experiences—played an important role in
increasing our understanding of the process of speech production. Arguably without the pioneering
work of Fromkin (1971), Fay and Cutler (1977), Brown and McNeill (1966) and others, including work
examining on-line processing with reaction time based tasks (Levelt, Roelofs, & Meyer, 1999), our
understanding of the process of speech production would have been significantly impeded. Although
investigations of speech production errors continue to play a crucial role in increasing our understand-
ing of speech production, comparatively less work has investigated errors during speech perception.
Like speech production errors, perceptual errors of speech—such as mondegreens and slips of the
ear—can be examined scientifically rather than anecdotally (see the pioneering work summarized
in Bond (1999)). As in the case of models of speech production, perceptual speech errors have the po-
tential to inform models of speech perception and spoken word recognition.

Although models of spoken word recognition have existed for several decades, and some
models have undergone significant revisions in that time, none of the widely-accepted models of
spoken word recognition have been used to predict what will happen when lexical retrieval fails
(NAM: Luce & Pisoni, 1998; PARSYN: Luce, Goldinger, Auer, & Vitevitch, 2000; Shortlist: Norris,
1994; Norris & McQueen, 2008; Cohort: Gaskell & Marslen-Wilson, 1997; Marslen-Wilson, 1987;
TRACE: McClelland & Elman, 1986). Given the basic assumptions of these models—multiple word-
forms that resemble the acoustic–phonetic input are activated and then compete with each other
for recognition—how the system recovered from failed lexical retrieval might have appeared so obvi-
ous as to not require comment: one of the other partially-activated competitors will be retrieved if the
desired target word cannot, for some reason, be retrieved.

Alternatively, the design characteristics of many models of spoken word recognition are such that
the desired target word wins the competition for recognition (e.g., Shortlist: Norris, 1994; Norris &
McQueen, 2008; Cohort: Gaskell & Marslen-Wilson, 1997; Marslen-Wilson, 1987; TRACE: McClelland
& Elman, 1986). That is, models of spoken word recognition aren’t designed to make errors.2 A similar
state of affairs is found in models of spoken word production where one class of models addresses chro-
nometric aspects of speech production, but don’t make any errors or predictions about speech errors
(e.g., Levelt, Roelofs, & Meyer, 1999), and another class of models addresses speech production errors,
but don’t make predictions regarding chronometric aspects of speech production (e.g., Dell, 1986,
1988, etc.).

Regardless of the reason for the silence on this matter, the lack of attention to recognition errors is
unfortunate, because, as Norman (1981, p. 13) reminds us: ‘‘By examining errors, we are forced to
demonstrate that our theoretical ideas can have some relevance to real behavior.’’ To demonstrate that
the theoretical idea we put forward—the macro-level structure of the mental lexicon influences
2 Note that the neighborhood activation model (NAM; Luce & Pisoni, 1998) produces as outputs probabilities of numerous word-
forms being retrieved. Therefore, it could be used to account for failed lexical retrieval in a straightforward manner.
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language-related processes—has some relevance to real behavior, we examined (simulated and real)
instances in which lexical retrieval failed for a ‘‘cognitive footprint’’ (Waller & Zimbelman, 2003), or
indirect evidence, of assortative mixing by degree in the mental lexicon. If the macro-level structure
of the lexicon observed by Vitevitch (2008)—a positive correlation between the degree of a given word
and the degree of its neighbors—has consequences for human behavior, then, in the context of failed
lexical retrieval, we would expect to observe a positive correlation between the degree of the target
word and the degree of the ‘‘erroneously’’ retrieved word. In the present study we used computer sim-
ulations, a corpus analysis of actual speech perception errors, and several laboratory-based tasks that
captured certain relevant aspects of failed lexical retrieval to look for a ‘‘cognitive footprint’’ of assor-
tative mixing by degree.

The focus of the present study on demonstrating that the macro-structure of the phonological lex-
icon, as measured by assortative mixing by degree, influences cognitive processing also contrasts with
many previous studies that observed various statistical relationships among words and in language
more generally. Consider the correlation that exists between the frequency with which a given word
occurs, and the number of phonological neighbors that the given word has: high frequency words tend
to have many phonological neighbors, whereas low frequency words tend to have few phonological
neighbors (e.g., Frauenfelder et al., 1993; Landauer & Streeter, 1973). This relationship is found be-
tween two different lexical characteristics in the same word, whereas we examined a relationship be-
tween the same lexical characteristic (i.e., degree/neighborhood density) in two different words (albeit
the words were phonological neighbors of each other). Less trivial, the present study examined how
this relationship might influence cognitive processing. There have been few (if any) studies that have
demonstrated an influence of global patterns observed in language—such as the various relationships
observed by Zipf (1935)—on cognitive processing, making the present study a significant contribution
to the field of cognitive psychology rather than simply a quantitative observation about the constitu-
ents of language.
2. Simulation 1 using jTRACE

Lewandowsky (1993) described several rewards (as well as some hazards) associated with using
computer simulations to explore new ideas in cognitive psychology. Among the benefits of using com-
puter simulations is that they provide a low-cost way to examine novel predictions about human
behavior. As a preliminary, low-cost test of the hypothesis that assortative mixing by degree influ-
ences some aspect of lexical processing we conducted a simulation using jTRACE (Strauss, Harris, &
Magnuson, 2007), an updated implementation of the TRACE model of spoken word recognition
(McClelland & Elman, 1986). jTRACE/TRACE shares many features with (but does have important
differences from) other widely-accepted models of spoken word recognition (e.g., Shortlist, NAM,
cohort, etc.).

Because the design characteristics of jTRACE make actual retrieval errors rare, if not impossible, we
‘‘simulated’’ a failure in lexical retrieval by presenting the model with a target item, and took the next
most active lexical item in the set of competitors as the retrieval error. We recognize that taking the
next-most active competitor in jTRACE to be the item that would be erroneously retrieved if lexical
retrieval failed may be a less than ideal method of simulating failed lexical retrieval in the model.
However, in the absence of a computational model of speech perception errors—the word recognition
equivalent of models of speech production errors like those of Dell (1986, 1988)—we found this meth-
od to be acceptable as a preliminary test of our hypothesis. The outcome of this preliminary test could
help us determine if further investigation of psycholinguistic behavior in human participants might be
warranted.

Note that our decision to use jTRACE should not be seen as an endorsement of the TRACE model
(McClelland & Elman, 1986). Indeed, our previous work demonstrated that jTRACE/TRACE (and Short-
list) could not account for the influence of clustering coefficient on spoken word recognition (Chan &
Vitevitch, 2009). Rather, our decision to use this computer model in our simulation was based solely
on practical concerns: it was the only computer model of spoken word recognition that was available
in a ready-to-use format, with an easy-to-use interface, and it would enable us to test our hypothesis
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in a low-cost setting. Therefore, we wish to set aside a number of theoretical issues that the psycho-
linguistics literature has (hotly) debated over the years—the existence of feedback connections be-
tween levels of representation, the required number of levels of representation, the nature of those
representations, etc.—and instead focus on the advantages of using computational models to explore
novel hypotheses, as suggested by Lewandowsky (1993).

If the macro-level structure of the phonological network observed by Vitevitch (2008; see also
Arbesman et al., 2010b) influences lexical processing, then we should see evidence of this influence
in the output of a model of spoken word recognition that captures certain important aspects of human
behavior. Specifically, we should observe a positive correlation between the degree/neighborhood
density of the target word and the degree/neighborhood density of the erroneously retrieved word
(i.e., the next most active lexical item in jTRACE).

2.1. Method

2.1.1. Stimuli
We used the 28 words with high clustering coefficient and the 28 words with low clustering

coefficient used in the jTRACE simulation in Chan and Vitevitch (2009). These items consisted of
monosyllabic words with 3 phonemes found in initial_lexicon in jTRACE. All of the words were found
in initial_lexicon (one of the lexicons available for use in jTRACE) and were also comparable in neigh-
borhood density, as reported in Chan and Vitevitch (2009). Given the previous failure of jTRACE to pro-
duce processing differences in these words in an examination of clustering coefficient (Chan &
Vitevitch, 2009), we reasoned that these words would provide the model with a significant challenge
in the present simulation investigating the influence of assortative mixing by degree on processing. If
effects of assortative mixing by degree are observed on processing in the present simulation, then our
confidence that similar results might be observed in human behavior is increased.

2.1.2. Procedure
The default parameter settings of the jTRACE computer model (Strauss et al., 2007) were used,

including use of initial_lexicon as the lexicon. Importantly, the network structure of the words in ini-
tial_lexicon exhibits the same characteristics as those observed in Vitevitch (2008) for a larger sample
of English words; this is not surprising because initial_lexicon was designed to reflect key character-
istics of the English language. As in Chan and Vitevitch (2009), we allowed the target words to reach
maximal activation. In the present simulation we then identified the next-most active item from the
set of lexical competitors. We assumed that the second-most active item would be the item retrieved
from the lexicon if lexical retrieval of the target word failed. The target words and the next most active
items (i.e., the ‘‘perceptual error’’) are listed in Appendix B.

2.2. Results and discussion

If the macro-structure of the mental lexicon (as assessed by the network science measure of assor-
tative mixing by degree) influences lexical processing, then we should see evidence of this influence in
the output of jTRACE. Specifically, we should observe a positive correlation between the degree/neigh-
borhood density of the target word and the degree/neighborhood density of the erroneously retrieved
word (i.e., the next most active lexical item in jTRACE). As described by Newman (2002, p. 1), ‘‘. . .the
Pearson correlation coefficient of the degrees at either ends of an edge. . ..’’ is the statistic used to as-
sess mixing by degree in the network science literature. We found a significant, positive relationship
(r(56) = +.46, p < .001) between the degree of the target items (mean = 5.28 neighbors) and the degree
of the next most active lexical item in jTRACE (mean = 4.68 neighbors).

Note that some of the words (n = 10) that were the next most active lexical item in jTRACE differed
from the target word by more than a single phoneme. Given the relatively small number of words in
initial_lexicon compared to the lexicon of the average human language user, it is not surprising that
such words are included in the set of lexical competitors (i.e., these words are the closest matches in
the initial_lexicon, but not necessarily the closest matches in a real lexicon). Such words would not be
directly connected to the target word in the network model constructed in Vitevitch (2008). Therefore,
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to make our test of the assortative mixing by degree hypothesis comparable to the network analysis of
Vitevitch (2008) we again correlated the degree of the target item to the degree of the next most active
lexical item in jTRACE, but restricted the analysis to next-most-active items that differed from the tar-
get word by the addition, deletion, or substitution of a single phoneme (i.e., there is a link between
these words in the phonological network in Vitevitch, 2008). We again found a significant, positive
relationship (r(46) = +.44, p < .01) between the degree of the target items (mean = 5.63 neighbors)
and the degree of the next most active lexical item in jTRACE (mean = 5.34 neighbors).

Thus, the output of a computer simulation that captures certain important aspects of human psy-
cholinguistic behavior does indeed show a ‘‘cognitive footprint’’ for the network feature of assortative
mixing by degree. If the network feature of assortative mixing by degree observed in a network anal-
ysis by Vitevitch (2008) was simply a spurious mathematical phenomenon, or resulted only from the
way in which the network was constructed, and did not have any consequences for psycholinguistic
behavior, then there should be no evidence of this relationship among word-forms in the output of a
computer simulation of psycholinguistic behavior. Observing evidence for assortative mixing by de-
gree when lexical retrieval ‘‘fails’’ suggests that the structure of the phonological lexicon—as observed
with tools from network science—influences lexical processing.
3. Simulation 2 using jTRACE and lexicons with different types of mixing by degree

Another advantage of computer simulations is that they can be used in ‘‘computational experi-
ments’’ to explore questions that are difficult—for ethical or practical reasons—to examine in the real
world (Plunkett & Elman, 1997; see also Vitevitch & Storkel, 2012). In the present simulation we
further explored how the structure of the lexicon might influence (failed) lexical retrieval by manip-
ulating mixing by degree in the lexicon. That is, we created a lexicon that exhibited assortative mixing
by degree, a lexicon that exhibited disassortative mixing by degree (where words with high degree
tend to connect to words with low degree, and vice versa; a negative correlation in degree), and a lex-
icon that exhibited no mixing by degree (zero correlation in degree, indicating that it is equally likely
that a word with high degree connects to a word with low degree or to a word with high degree, and
vice versa).

It would be difficult to carry out this manipulation in a controlled laboratory setting with human
language-users using a conventional psycholinguistic task because assortative mixing by degree ap-
pears to be a general characteristic of phonological word-forms in real languages (Arbesman et al.,
2010b). That means that an artificial vocabulary would need to be constructed with the characteristics
that we wish to examine, and participants would need to be trained on this new artificial vocabulary
before we could test for the influence of these characteristics on processing; a difficult and time-con-
suming endeavor, indeed.

We again assumed that the most active lexical competitor in jTRACE would be retrieved if lexical
retrieval of the target item failed. If the macro-level structure of the lexicon indeed influences process-
ing, then we expect to find a cognitive footprint of this influence in the output of the computational
model. That is, the correlation between the degree of the target word and the degree of the next most
active lexical item in the set of competitors should match the direction of the correlation between the
degree of the target word and the degree of the neighbors in each lexicon that we constructed. Spe-
cifically, we should see a positive correlation in the output of the model for the lexicon that exhibits
assortative mixing by degree, a negative correlation in the output of the model for the lexicon that
exhibits disassortative mixing by degree, and zero correlation in the output of the model for the lex-
icon that does not exhibit any mixing by degree.
3.1. Method

3.1.1. Stimuli
Our focus in the present simulations was on the macro-level structure of the lexicon, so we simply

used strings of phonemes to create items that—for the sake of convenience—we refer to as words (N.B.
any resemblance of these specially created words to real words in English is strictly coincidental). All
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of the words in the specially created lexicons were three phonemes long, and used the 14 phoneme
symbols available in jTRACE (^, a, b, d, g, i, l, k, p, r, s, S, t, u). A word was considered a neighbor of
another word if a single phoneme could be substituted into the word to form another word that ap-
peared in the lexicon. (Additions and deletions of phonemes were not included in the assessment of
phonological neighbors in order to keep all of the words the same length.)

Three separate lexicons were created that varied in the type of mixing by degree. The lexicon that
exhibited assortative mixing by degree contained 56 words, the lexicon that exhibited disassortative
mixing by degree contained 56 words, and the lexicon that exhibited no mixing by degree contained
48 words. The small (and unequal) number of words in each lexicon is a result of the constraints of the
number of phonemes in the model, from maintaining the same word-length, and creating neighbors
(by substituting one phoneme in the target word to form a new word) that would exhibit the desired
type of mixing by degree. See Appendix C for the words that constituted the three different lexicons.
Correlational analyses of the degree of each word and the degree of the neighbors of each word con-
firmed that the three lexicons exhibited the desired type of mixing by degree. In the case of the lexicon
that exhibited assortative mixing by degree, r = +1.0 (p < .0001). For the lexicon that exhibited disas-
sortative mixing by degree, r = �1.0 (p < .0001), and for the lexicon that exhibited no mixing by degree,
r = 0 (p = 1).

Although the relationship between the degree of the target and neighbors (i.e., mixing by degree)
differed among the three lexicons, the three lexicons contained words that were comparable in de-
gree/neighborhood density (F(2,157) = 2.01, p = .14). In the case of the lexicon that exhibited assorta-
tive mixing by degree, the mean number of neighbors per word was 1.7 (sd = .46). For the lexicon that
exhibited disassortative mixing by degree, the mean number of neighbors per word was 1.5 (sd = .87).
For the lexicon that exhibited no mixing by degree, the mean number of neighbors per word was 1.5
(sd = .51).

We recognize that the small number of words and the few neighbors that each word has in the cur-
rent lexicons might be considered a ‘‘simplified’’ lexicon, especially when compared to the size of the
lexicon used in Simulation 1 or to the lexicon of a typical human. However, it is important to keep in
mind that ‘‘[m]odels are not intended to capture fully the processes they attempt to elucidate. Rather,
they are explorations of ideas about the nature of cognitive processes. In these explorations, simplifi-
cation is essential—through simplification, the implications of the central ideas become more trans-
parent’’ (McClelland, 2009, p. 11). The ‘‘simplified’’ lexicons used in the present simulation provided
us with the opportunity to explore the idea of how the macro-level structure of a network—as mea-
sured by mixing by degree—might influence lexical processing.

3.1.2. Procedure
The default parameter settings of the jTRACE computer model (Strauss et al., 2007) were used in

the present simulations, with the exception of using the specially created lexicons that varied in mix-
ing by degree. Each word in each lexicon was presented as input. After 180 time slices the identity of
the second-most active item in the set of lexical competitors was determined. We assumed that the
second-most active item would be the item retrieved from the lexicon if lexical retrieval failed.

3.2. Results and discussion

As in Simulation 1, we again correlated the degree of the target word and the degree of the next-
most active word in the set of competitors to determine if there was a ‘‘cognitive footprint’’ in the out-
put of the model indicative of the type of mixing by degree exhibited by the lexicon. If the macro-level
structure of the lexicon influences (failed) lexical retrieval, then the correlation between the degree of
the target word and the degree of the next most active word in the output of the model should be po-
sitive for the lexicon that exhibits assortative mixing by degree, negative for the lexicon that exhibits
disassortative mixing by degree, and zero for the lexicon that does not exhibit mixing by degree.

For the lexicon that exhibited assortative mixing by degree, the correlation between the degree of
the target word and the degree of the next most active lexical item in the set of competitors was
r(54) = +.91 (p < .0001). For the lexicon that exhibited disassortative mixing by degree, the correlation
between the degree of the target word and the degree of the next most active lexical item in the set of
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competitors was r(54) = �.75 (p < .0001). Note that in three instances in the disassortative lexicon
(indicated in the appendix) the target word itself was the second-most active item. In those instances,
we used the (incorrect) item with the highest activation as the item that would be retrieved if lexical
retrieval failed. For the lexicon that did not exhibit mixing by degree, the correlation between the de-
gree of the target word and the degree of the next most active lexical item in the set of competitors
was r(46) = 0.0 (p = 1).

The results of Simulation 1 and 2 indicate that the type of mixing by degree exhibited by the pho-
nological lexicon influences certain aspects of lexical processing, suggesting that the structure of the
mental lexicon influences lexical processing. Because the computer model used in these simulations,
jTRACE, captures certain relevant aspects of spoken word recognition behavior in humans we are
encouraged to look for a cognitive footprint of assortative mixing by degree in human behavior. If
the network feature of assortative mixing by degree is not simply a mathematical artifact of the net-
work analysis performed in Vitevitch (2008), and the type of mixing observed in the English phono-
logical lexicon influences processing, then we should be able to observe evidence of assortative
mixing by degree when lexical retrieval ‘‘fails’’ in humans. We first analyzed a corpus of speech per-
ception errors, that is, actual, attested failures in lexical retrieval, for a cognitive footprint of assorta-
tive mixing by degree in human behavior. We then used several psycholinguistic tasks to create
situations in the laboratory that captured certain relevant aspects of ‘‘failed’’ lexical retrieval to look
further for a cognitive footprint of assortative mixing by degree in human behavior.

4. Slip of the ear analysis

Although analyses of naturally occurring speech errors laid the foundation for understanding
the process of speech production (Fromkin, 1971), our understanding of the process of word rec-
ognition has been guided primarily by evidence obtained from experiments employing reaction-
time methodologies (e.g., priming, lexical decision, and naming tasks) rather than from naturally
occurring errors. Speech perception errors do exist, and are perhaps better known as slips of the
ear. A slip of the ear is a misperception of a correctly produced utterance. Slips of the ear should
not be confused with slips of the tongue (i.e., speech production errors), where the speaker intends
to say one thing but erroneously produces something else. In slips of the ear, the utterance is pro-
duced correctly (i.e., as intended), but the perceiver ‘‘hears’’ something else. An example (from
Bond, 1999) of a slip of the ear is when a speaker says, ‘‘Stir this!’’ but the listener perceives
the utterance as ‘‘Store this!’’

As described in Bond (1999), the misperceptions that typically occur in slips of the ear involve
misperceiving a vowel or consonant in a word (resulting in the erroneous perception of another word),
the addition or deletion of a syllable in a word, or the mis-segmentation of words in a phrase (resulting
in the perception of more or fewer words than was produced). Although there are likely to be many
factors that contribute to slips of the ear, certain errors have not been observed, like hearing cat in-
stead of dog, suggesting that semantic information does not strongly contribute to the initial stages
of speech perception or to misperceptions; this contrasts with speech production errors where such
substitutions have been observed (Fromkin, 1971).

Analyses of slips of the ear often provide evidence that is consistent with and complements the
findings obtained from laboratory-based experiments (see the work of Bond (1999), Felty, Buch-
wald, Gruenenfelder, and Pisoni (2013), and others). For example, Vitevitch (2002b) found that
the target word in 88 slips of the ear (obtained from the materials in the appendix of Bond
(1999)) had denser phonological neighborhoods and higher neighborhood frequency than words
comparable in length and word class that were randomly selected from the lexicon. This result—
in accord with predictions derived from the neighborhood activation model and tested with several
conventional psycholinguistic tasks in the laboratory (Luce & Pisoni, 1998)—suggests that words
with dense neighborhoods and high neighborhood frequency are more difficult to perceive than
words with sparse neighborhoods and low neighborhood frequency (hence their disproportionate
appearance in slips of the ear corpora). In the present analysis we examined in a different way
the same 88 slips of the ear examined in Vitevitch (2002b) for a cognitive footprint of assortative
mixing by degree in human performance.
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4.1. Methods

The items examined in Vitevitch (2002b) came from the Bond (1999) corpus and consisted of mis-
perceptions made by adults that were classified by Bond as misperceptions of vowels or of consonants.
This led to the exclusion of ‘‘complex errors’’ and parsing errors that resulted in ‘‘extensive mismatch
between utterance and perception.’’ Also excluded were proper nouns, foreign words or phrases, acro-
nyms or auditory spellings, and domain-specific technical terms.

4.2. Results and discussion

In the present analysis we examined the neighborhood density (i.e., degree) of the target words
(mean = 12.3 neighbors, sd = 7.8) and the neighborhood density of the erroneously perceived words
(mean = 13.1 neighbors, sd = 8.2). When the neighborhood density/degree of the 88 spoken
words was correlated with the neighborhood density/degree of the corresponding misperceived
words, a significant, positive correlation was observed (r(88) = +.68, p < .0001). This result suggests
that naturally occurring instances of failed lexical retrieval contain a cognitive footprint of the net-
work structure known as assortative mixing by degree that was observed in a network analysis of
the English phonological lexicon (Vitevitch, 2008), indicating further that the structure of the mental
lexicon influences certain language-related processes.

Observing that assortative mixing by degree influences human behavior is neither a trivial result,
nor a foregone outcome given the observation of assortative mixing by degree in the phonological net-
work examined in Vitevitch (2008). One need only look at the other studies reported in Vitevitch
(2002b)—where the slips of the ear used in the present analysis were initially analyzed (see also Bond,
1999)—for evidence that human behavior doesn’t always conform to the predictions of psychological
theory or to statistical distributions in the language. In addition to the findings regarding neighbor-
hood density and neighborhood frequency summarized above in Section 4, Vitevitch (2002b) found
that the slip of the ear tokens were higher in frequency of occurrence than words in general. This
observation was unexpected given the predictions of models of spoken word recognition, which indi-
cate that words with low frequency of occurrence are difficult to perceive, and would therefore lead to
the prediction that slips of the ear should be low in frequency of occurrence rather than high as was
observed in Vitevitch (2002b).

Furthermore, Zipf (1935) observed that there are many words in the language that are relatively
low in frequency of occurrence, and few words in the language that are relatively high in frequency
of occurrence. The statistical distribution of the number of words with a given word-frequency in
the language would further lead to the prediction that, based on the principles of statistical sampling,
it is most likely that slips of the ear would be words that are low in frequency of occurrence, instead of
high in frequency of occurrence as was observed in Vitevitch (2002b). We note that the perceptual
identification experiment and lexical decision experiment reported in Vitevitch (2002b) provided evi-
dence that the counter-intuitive finding regarding word-frequency observed in the same study might
have been due to the more rapid production of high frequency words compared to low frequency
words that typically occurs in naturalistic settings (see also Wright, 1979). We further note that the
counter-intuitive finding of word frequency in slips of the ear serves as an example that human behav-
ior does not always conform to psychological theory or to statistical distributions in the language,
making the present observation of an influence of assortative mixing by degree on slips of the ear a
significant finding that provides important evidence that the structure of the mental lexicon influ-
ences certain language-related processes.

The combination of naturalistic observation and laboratory-based methods in Vitevitch (2002b) re-
quired to resolve the counter-intuitive finding of word frequency in slips of the ear emphasized to us
the importance of using multiple methods to examine a research question. Like all research method-
ologies, naturalistic observations such as naturally occurring speech errors have certain strengths and
weaknesses (see discussion in Bond (1999)). Rather than rely solely on this source of human behav-
ioral data to examine how assortative mixing by degree might influence lexical retrieval processes,
we conducted three psycholinguistic experiments. Given the role that assortative mixing by degree
plays in network resilience, we used psycholinguistic tasks that captured certain relevant aspects of
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‘‘failed’’ lexical retrieval. Like all laboratory-based tasks, the psycholinguistic tasks that we used are
somewhat contrived, and performance in each of them is likely to be influenced by several factors.
Nevertheless, these tasks may allow us to glimpse a cognitive footprint of the network structure of
the mental lexicon. While each of these tasks individually provides limited information, together
the results of these tasks offer a more complete view of how the structure of the mental lexicon might
influence processing.
5. Experiment 1: Perceptual identification task

In the perceptual identification task, participants hear a word mixed with noise and type or say the
word that was heard. Pisoni (1996) provided a concise review of the perceptual identification task and
its use. He noted that differences in signal-to-noise ratios, speaking rate, response format (open- versus
closed-set), the types of noise used (e.g., white, pink, envelope-shaped, etc.), and a number of other fac-
tors influence the responses made in this task. In addition, responses in this task are thought to reflect
both bottom-up processing of the acoustic–phonetic input, as well as top-down processing strategies
that may be employed in this ‘‘off-line’’ task (meaning that a response deadline is not typically imposed
on participants). We acknowledge these concerns regarding the perceptual identification task, but also
recognize certain benefits of this task that make it well-suited to our present need as a proxy of failed
lexical retrieval. Indeed, we are not the only ones to recognize that the perceptual identification task
captures certain relevant aspects of failed lexical retrieval; Felty et al. (2013) used this task to make
a corpus of speech perception errors collected under controlled laboratory conditions.

In the version of the perceptual identification task used in the present experiment, participants
heard real English words embedded in white noise at a signal-to-noise ratio that would lead to a rea-
sonable number of erroneous responses (S/N = +5). Although overall accuracy of responses is typically
assessed in this task, we instead analyzed the incorrect responses, which, by definition, are instances
of failed lexical retrieval. Lower signal-to-noise ratios would increase the number of erroneous re-
sponses, but the increased noise would also likely discourage the participants in the task, and perhaps
lead to idiosyncratic and task-specific strategies that would influence task performance. Higher signal-
to-noise ratios would likely lead to performance that approached ‘‘ceiling,’’ leaving us a small number
of errors to examine. Therefore, we used a signal-to-noise ratio that would provide us with a reason-
able number of ‘‘genuine’’ erroneous responses.

Recall that degree in network science terminology is equivalent to phonological neighborhood den-
sity in psycholinguistics. It is well-known that phonological neighborhood density is correlated with a
number of other factors, like word frequency, phonotactic probability, etc., that also influence spoken
word recognition (Frauenfelder et al., 1993; Landauer & Streeter, 1973). Also recall the over-represen-
tation of words with high neighborhood density observed by Vitevitch (2002b) in a corpus of speech
errors. To take advantage of the control afforded by laboratory conditions to minimize the potential
influence of other factors known to influence spoken word recognition, and to examine a broader
range of words from the mental lexicon, we selected an equal number of words that had relatively
high neighborhood density and that had relatively low neighborhood density (Luce & Pisoni, 1998),
but were similar in terms of several other lexical characteristics (see Section 5.1.2 for details). We then
correlated the neighborhood density of the erroneous responses to the neighborhood density of the tar-
get word that was embedded in noise. If the macro-level characteristic of the mental lexicon known as
assortative mixing by degree influences processing, then we should observe in the perceptual identi-
fication task a correlation between the neighborhood density of the erroneous response and the neigh-
borhood density of the target word.
5.1. Method

5.1.1. Participants
Twelve native English-speaking students enrolled at the University of Kansas gave their written

consent to participate in the present experiment. None of the participants reported a history of speech
or hearing disorders, nor participated in the other experiments reported here.
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5.1.2. Materials
One hundred English monosyllabic words containing three phonemes in a consonant–vowel–con-

sonant syllable structure were used as stimuli in this experiment (and are listed in Appendix D). A
male native speaker of American English (the first author) produced all of the stimuli by speaking
at a normal speaking rate and loudness in an IAC sound attenuated booth into a high-quality micro-
phone. Isolated words were recorded digitally at a sampling rate of 44.1 kHz. The pronunciation of
each word was verified for correctness. Each stimulus word was edited into an individual sound file
using SoundEdit 16 (Macromedia, Inc.). The amplitude of the individual sound files was increased
to their maximum without distorting the sound or changing the pitch of the words by using the Nor-
malization function in SoundEdit 16. The same program was used to degrade the stimuli by adding
white noise equal in duration to the sound file. The white noise was 5 dB less in amplitude than
the mean amplitude of the sound files. Thus, the resulting stimuli were presented at a +5 dB signal
to noise ratio (S/N).

Neighborhood density refers to the number of words that sound similar to the stimulus word based
on the addition, deletion or substitution of a single phoneme in that word (Luce & Pisoni, 1998). A
word like cat, which has many neighbors (e.g., at, bat, mat, rat, scat, pat, sat, vat, cab, cad, calf, cash,
cap, can, cot, kit, cut, coat), is said to have a dense phonological neighborhood, whereas a word, like
dog, that has few neighbors (e.g., dig, dug, dot, fog) is said to have a sparse phonological neighborhood
(N.B., each word has additional neighbors, but only a few were listed for illustrative purposes). Half
of the stimuli had dense phonological neighborhoods (mean = 27.7 neighbors, sd = 1.6), and the
remaining stimuli had sparse phonological neighborhoods (mean = 14.9 neighbors, sd = 1.5;
F(1,98) = 1648.62, p < .0001). Although the stimuli differed in neighborhood density, they were com-
parable on a number of other characteristics as described below.

Subjective familiarity: Subjective familiarity was measured on a seven-point scale (Nusbaum, Pisoni,
& Davis, 1984). Words with dense neighborhoods had a mean familiarity value of 6.87 (sd = .22) and
words with sparse neighborhoods had a mean familiarity value of 6.82 (sd = .28, F(1,98) = 1.50,
p = .22). The mean familiarity value for the words in the two groups indicates that all of the words
were highly familiar.

Frequency of occurrence in the language: Average log word frequency (log10 of the raw values from
Kučera and Francis (1967)) was 1.03 (sd = .58) for the words with dense neighborhoods, and 1.00
(sd = .58) for the words with sparse neighborhoods (F(1,98) = .08, p = .77).

Neighborhood frequency: Neighborhood frequency is the mean word frequency of the neighbors of
the target word. Words with dense neighborhoods had a mean log neighborhood frequency value of
2.03 (sd = .24), and words with sparse neighborhoods had a mean log neighborhood frequency value of
1.94 (sd = .25; F(1,98) = 2.99, p = .09).

Phonotactic probability: The phonotactic probability was measured by how often a certain segment
occurs in a certain position in a word (positional segment frequency) and by the segment-to-segment
co-occurrence probability (biphone frequency; as in Vitevitch and Luce (2005)). The mean positional
segment frequency for words with dense neighborhoods was .147 (sd = .02) and .140 (sd = .02,
F(1,98) = 2.11, p = .15), respectively. The mean biphone frequency for words with dense neighbor-
hoods was .007 (sd = .003) and for words with sparse neighborhoods was .007 (sd = .003,
F(1,98) = .009, p = .93). These values were obtained from the web-based calculator described in
Vitevitch and Luce (2004).

5.1.3. Procedure
Participants were tested individually. Each participant was seated in front of an iMac computer

running PsyScope 1.2.2 (Cohen, MacWhinney, Flatt, & Provost, 1993), which controlled the presenta-
tion of stimuli and the collection of responses. In each trial, the word ‘‘READY’’ appeared on the com-
puter screen for 500 ms. Participants then heard one of the randomly selected stimulus words
imbedded in white noise through a set of Beyerdynamic DT 100 headphones at a comfortable listening
level. Each stimulus was presented only once. The participants were instructed to use the computer
keyboard to enter their response (or their best guess) for each word they heard over the headphones.
They were instructed to type ‘‘?’’ if they were absolutely unable to identify the word. The participants
could use as much time as they needed to respond. Participants were able to see their responses on the
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computer screen when they were typing and could make corrections to their responses before they hit
the RETURN key, which initiated the next trial. The experiment lasted about 15 min. Prior to the exper-
iment, each participant received five practice trials to become familiar with the task. These practice
trials were not included in the data analyses.

5.2. Results and discussion

A response was scored as correct if the phonological transcription of the response matched the
phonological transcription of the stimulus. Misspelled words and typographical errors in the re-
sponses were scored as correct responses in certain conditions: (1) adjacent letters in the word were
transposed, (2) the omission of a letter in a word was scored as a correct response only if the response
did not form another English word, or (3) the addition of a single letter in the word was scored as a
correct response if the letter was within one key of the target letter on the keyboard. Of the 1200 re-
sponses, 328 were correct (27%) and 14 responses (1%) received the response of ‘‘absolutely unable to
identify’’ (i.e., ‘‘?’’); these responses could not, of course, be analyzed further.

Turning to the 858 incorrect responses (72% of the 1200 responses), 398 (46% of the incorrect re-
sponses) were phonological neighbors of the target words based on the one phoneme metric used in
Luce and Pisoni (1998), and 460 (54% of the incorrect responses) were not phonological neighbors of
the target words. Given the way in which assortative mixing by degree was calculated in the net-
work analysis of Vitevitch (2008), we further analyzed only the incorrect responses that were pho-
nological neighbors of the target words (based on the metric used in Luce & Pisoni, 1998). We
recognize that the remaining incorrect responses might be useful for developing an account of all
types of perceptual errors, for developing an algorithm that would predict the likelihood of a misper-
ception occurring, etc. Such questions are interesting, but they are not the focus of the present inves-
tigation and do not directly address the question at hand: can we find in human language behavior a
cognitive footprint of assortative mixing by degree? Only the incorrect responses that are phonolog-
ical neighbors of the target words allow us to directly address that question. Furthermore, the same
restriction was used in the analysis of actual speech perception errors and in the jTRACE simulations.
Using the same restriction in each analysis enables us to equitably compare the results across re-
search methods.

To look for a trace of assortative mixing by degree in the responses in the perceptual identification
task we correlated the neighborhood density of the target word (n = 87, mean = 21.06, sd = 6.61) to the
mean neighborhood density of the incorrect responses to that target (n = 87, mean = 22.36, sd = 6.22;
note that all of the participants correctly identified 13 words reducing n in the above analyses to 87
instead of 100). We observed a positive and statistically significant correlation between degree/neigh-
borhood density of the targets and the mean of the incorrect responses that were neighbors of the tar-
gets (r(85) = +.22, p < .01).

The magnitude of the correlation in the present experiment is smaller than that observed in the
network analysis reported in Vitevitch (2008), and in the analysis of slips of the ear in Section 4.2
above. This should not be surprising given that we selected an equal number of words with dense pho-
nological neighborhoods (i.e., high degree) and with sparse phonological neighborhoods (i.e., low de-
gree) to use as stimuli in the perceptual identification experiment. Recall that the slips of the ear
analysis showed that misperceptions typically occur for words with dense phonological neighbor-
hoods (i.e., high degree), so inclusion of items with sparse phonological neighborhoods/low degree
may have reduced the overall magnitude of the present correlation.

Furthermore, the perceptual identification task captures certain important aspects of what happens
when lexical retrieval fails, but it is unlikely that this (or any) laboratory-based task provides a perfect
analog of cognitive processes used in the real world, contributing further to the reduced magnitude of
the present correlation. This, too, should not be surprising, because ‘‘. . .the laboratory setting is not
necessarily representative of the social world within which people act. As a consequence, we cannot
use laboratory findings to estimate the likelihood that a certain class of responses will occur in natu-
ralistic situations. . ..Experiments are not conducted to yield such an estimate.’’ (Berkowitz & Donner-
stein, 1982, p. 255). Rather, the present experiment (like most experiments) was conducted to
demonstrate that changes in variable X can lead to changes in variable Y.
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The result observed in the present experiment indicates that listeners who incorrectly perceived a
neighbor of a target word with a dense phonological neighborhood (mixed with noise) tended to re-
spond with a word that also had a dense phonological neighborhood. Concomitantly, listeners who
incorrectly perceived a neighbor of a target word with a sparse phonological neighborhood (mixed
with noise) tended to respond with a word that also had a sparse phonological neighborhood. This re-
sult provides evidence of a cognitive footprint of assortative mixing by degree observed in a network
analysis of the mental lexicon by Vitevitch (2008), and also observed in the present report in a com-
puter simulation and an analysis of a speech error corpus. This result further suggests that the struc-
ture of the mental lexicon influences cognitive processing, and that the tools of network science can be
used to provide novel insights about those cognitive processes and representations.
6. Experiment 2: Similar sounding word task

The perceptual identification task used in Experiment 1 captured certain relevant aspects of failed
lexical retrieval (see also Felty et al., 2013), allowing us to examine whether the macro-structure ob-
served among word-forms in the phonological lexicon of English (i.e., assortative mixing by degree)
might influence in some way human language processing. However, we also recognize that the noise
used in the perceptual identification task might differentially mask different phonemes, and might in-
duce task-specific strategies in addition to the strategies typically used during spoken word recogni-
tion. Therefore, in the present experiment we used a task that did not employ degraded stimuli. In
Experiment 2 of Luce and Large (2001), participants heard a nonword, and were asked to say the first
real English word that came to mind that sounded like that nonword. For example, a participant might
have heard /fin/ and responded with the real word feet. We reasoned that a modified version of the
task—using as stimuli real English words instead of nonwords—might capture certain relevant aspects
of failed lexical retrieval and allow us to see an influence of assortative mixing by degree on process-
ing. We recognize that asking participants to respond with a word other than the one they heard
might seem unnatural, but we believe this task is no more unnatural than other tasks used in psycho-
linguistics (e.g., semantic associate task, Nelson, McEvoy, & Schreiber, 1998).

Participants in the present experiment were presented with the same English words used in Exper-
iment 1—this time without noise—and were asked to respond with the first English word that came to
mind that sounded like the word they heard. Similar to the jTRACE simulation, the word that partic-
ipants produced in this task was viewed as the word that would be retrieved when lexical retrieval
failed. As in Experiment 1, we correlated the neighborhood density/degree of the target word (i.e.,
what was presented) to the mean neighborhood density/degree of responses that were phonological
neighbors.
6.1. Method

6.1.1. Participants
Fourteen native English speaking students enrolled at the University of Kansas gave their written

consent to participate in the present experiment. None of the participants reported a history of speech
or hearing disorders.
6.1.2. Materials
The same stimuli used in Experiment 1 were used in the present experiment. The only exception

being that the words were not mixed with white noise in the present experiment.
6.1.3. Procedure
The same equipment and procedure used in Experiment 1 were used in the present experiment,

with the following exception. Instead of being asked to identify the degraded stimulus presented to
them over a set of headphones, participants were asked to type in the first English word that came
to mind that ‘‘sounded like’’ the word (presented without noise) that they heard over a set of
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headphones. In addition, the option to indicate that they were ‘‘unable to identify the word’’ (i.e., ‘‘?’’)
was not provided to participants.
6.2. Results and discussion

Misspelled words and typographical errors in the responses were corrected according to the fol-
lowing criteria: (1) transposition of adjacent letters in the word was corrected, and (2) the addition
of a single letter in the word was removed if the letter was within one key of the target letter on
the keyboard. Of the 1400 responses that were made, nonwords (2.8%), proper nouns or slang words
(2.2%), responses that were identical to the stimulus (0.7%), words that differed from the target by
more than 1 phoneme (15.1%), or that were semantically rather than phonologically related (4.7%)
were not included in the analysis. The remaining 1043 (74.5%)3 responses were phonological neighbors
of the target words and analyzed further.

As in Experiment 1, we correlated the degree/neighborhood density of the target words (n = 99,
mean = 21.39, sd = 6.61) to the mean degree/neighborhood density of the responses that were phono-
logical neighbors of the target word (n = 99, mean = 21.87, sd = 4.63; note that none of the participants
provided a response that was a neighbor to the word doll, reducing n in the above analyses to 99 in-
stead of 100). We observed a positive and statistically significant correlation between neighborhood
density/degree of the targets and responses (r(97) = +.38, p < .01). This result indicates that listeners
who heard a word with a dense phonological neighborhood tended to respond with a similar sounding
word that also had a dense phonological neighborhood. Concomitantly, listeners who heard a word
with a sparse phonological neighborhood tended to respond with a similar sounding word that also
had a sparse phonological neighborhood.

The result observed in the present experiment replicates the results observed in the perceptual
identification task in Experiment 1, and in the slip of the ear analysis. Observing the same result across
experimental tasks (perceptual identification and the similar word task), research methodologies (net-
work analysis, psycholinguistic experiments, naturalistic observation, and computer simulation), and
in different samples of words is reassuring. However, in Experiment 3 we wished to further examine
the influence of assortative mixing by degree in human language behavior by using a less conventional
task from psycholinguistics that again captured certain aspects of failed lexical retrieval.
7. Experiment 3: Verbal transformation illusion

To further examine how assortative mixing by degree might influence human language processing
we used the verbal transformation illusion first described by Warren and Gregory (1958), and used
more recently by Shoaf and Pitt (2002). In the verbal transformation illusion a listener hears a contin-
uously repeating word (or phrase) that they perceive to change. As described in Warren (1968, p. 261),
‘‘[t]hese ‘‘verbal transformations’’ (VT’s) range from a word that rhymes with the actual stimulus to
extreme phonetic distortions.’’

One account of the verbal transformation illusion suggests that repeated stimulation ‘‘satiates’’ the
representational unit corresponding to the repeated word (MacKay, Wulf, Yin, & Abrams, 1993; see
also Warren, 1968)—analogous to the way a single neuron habituates with repeated stimulation—such
that increasingly greater amounts of stimulation are required to activate that representational unit. In
the presence of a constant level of stimulation (i.e., the continuous repetition of the word), it becomes
more difficult to retrieve the representational unit corresponding to the repeated word. With the rep-
resentational unit corresponding to the repeated word ‘‘temporarily removed’’ from the competition
3 This proportion is comparable to the proportion of phonological neighbors obtained as responses in Experiment 2 of Luce and
Large (2001). They found that about 70% of the real word responses to their nonword stimuli differed from the nonword by the
substitution of a single phoneme in the onset, vowel, or final position. Furthermore, Luce and Large found that 27% of the changes
took place in the initial consonant of the nonword, 10% took place in the vowel, and 34% took place in the final consonant. The
distribution of responses across word positions in the present experiment was also similar to that observed by Luce and Large,
suggesting that participants in the present experiment did not adopt the naïve strategy of simply producing words that rhymed
with the stimulus.
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occurring among similar sounding word-forms, another representational unit (that sounds similar to
the repeated word) will be retrieved instead of the representational unit corresponding to the
repeated word. Although the verbal transformation illusion might be considered a somewhat uncon-
ventional psycholinguistic task, it creates in the controlled conditions of the laboratory a situation that
captures certain aspects of failed lexical retrieval, and an opportunity for us to find a cognitive foot-
print of assortative mixing by degree.

Participants in the present experiment heard 350 repetitions of a word (with a 150 ms inter-stim-
ulus-interval), and were asked to report the ‘‘new’’ word they ‘‘heard’’ whenever their percept chan-
ged. Listeners took part in four such trials (2 words had dense neighborhoods and 2 words had sparse
neighborhoods). As in the analysis of the speech error corpus and the previous experiments, we cor-
related the neighborhood density of the word that was presented to the mean neighborhood density
of the reported percepts that were phonological neighbors.
7.1. Methods

7.1.1. Participants
Forty-eight undergraduates were recruited from Introductory Psychology classes at the University

of Kansas. They received partial credit towards a course requirement for participating. All participants
reported no history of speech or hearing disorders, and all were native speakers of English.
7.1.2. Materials
The stimuli consisted of eight monosyllabic English words. Four words (pail, loan, jail, peel) had

dense phonological neighborhoods (mean = 33.75; sd = .5) and four words (poise, lodge, guess, peg)
had sparse phonological neighborhoods (mean = 9.0; sd = 2.71). These eight items were split into
two lists of four words such that each participant received two words with high density and two
words with low density. The words with high density and the words with low density that each par-
ticipant received started with the same phoneme (e.g. lodge and loan). The words that participants
heard were presented in a counterbalanced order such that all possible orders of the four stimuli were
presented, resulting in a total of 48 different orderings. Each participant randomly received one of the
different orderings.

The words chosen were matched on familiarity, log frequency, sum of phones, sum of biphones,
and log neighborhood frequency. No significant differences were found between the dense and sparse
words on these variables, familiarity (F(1,6) = 2.49, p = .17), log frequency (F(1,6) = .04, p = .86), sum of
the phones (F(1,6) = 1.46, p = .27), sum of the biphones (F(1,6) = .104, p = .76), log neighborhood frequency
(F(1,6) = .12, p = .74), nor stimulus duration of the recorded words (F(1,6) = 1.96, p = .21). See Table 1
for the mean and standard deviation values of these variables.

A male native speaker of American English (the third author) produced the words by speaking at a
normal rate and volume into a high-quality microphone in an Industrial Acoustics Company sound
attenuated booth. Individual words were recorded digitally at a sampling rate of 44.1 kHz. The pro-
nunciation of each word was verified for correctness. Each stimulus word was edited with SoundEdit
16 (Macromedia, Inc.) into an individual sound file.
Table 1
Means (and standard deviations) of dense and sparse words in Experiment 3.

Dense Sparse

Familiarity 7 (0) 6.71 (.37)
Log frequency 1.18 (.67) 1.10 (.52)
Sum of phones .17 (.03) .14 (.04)
Sum of biphones .005 (.0006) .004 (.003)
Log neighborhood freq. 2.07 (.02) 2.13 (.39)
Stimulus duration 560.9 (72.05) 640.38 (87.66)

Note: Durations are measured in milliseconds.
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7.1.3. Procedure
The same equipment used in the previous experiments was used in the present experiment. Par-

ticipants in the present experiment were tested individually. They were instructed that they would
hear a word repeated over a set of headphones, and that the word they heard might occasionally
change to another word or to a nonsense word. The participants were informed that the changes could
be subtle or very noticeable and that they were to report (out loud into a microphone placed in front of
the seated participant) any and all changes, words and nonsense words alike. The participants were
assured that there were no correct or incorrect responses, and that if they did not hear any changes,
they were to say nothing.

After receiving verbal instructions, each participant was seated in front of an iMac computer
running PsyScope 1.2.2 (Cohen et al., 1993). Participants were given a short practice session in which
the word ball was repeated 50 times. After the practice session, the experiment proper began. Each of
the four words was presented for 350 repetitions, with a 150 ms of silence between each repetition.
The entire session lasted approximately 30 min. Participant’s responses were recorded digitally for la-
ter analysis and verification.

7.2. Results and discussion

All of the responses were phonologically transcribed. Of the 513 responses, we further analyzed
143 real word neighbors (27.88%). We did not analyze further the 282 responses that were nonwords
(54.97%),4 the 72 real words that differed from the target word by 2 phonemes (14.04%), or the 16 real
words that differed from the target word by more than 2 phonemes (3.12%). For the 143 responses that
were phonological neighbors of the target words we correlated the degree/neighborhood density of the
repeated words (mean = 21.37, sd = 13.35) to the mean degree/neighborhood density of the percepts in
the verbal transformation illusion (mean = 13.84, sd = 10.70), and observed a positive, statistically signif-
icant correlation between neighborhood density/degree of the targets and responses (r(141) = +.66,
p < .0001).

This result indicates that listeners who repeatedly heard a word with a dense phonological neigh-
borhood tended to transform that word into a similar sounding word that also had a dense phonolog-
ical neighborhood. Concomitantly, listeners who repeatedly heard a word with a sparse phonological
neighborhood tended to transform that word into a similar sounding word that also had a sparse pho-
nological neighborhood. This result is consistent with the hypothesis that assortative mixing by de-
gree—first observed in a network analysis of the mental lexicon by Vitevitch (2008) and again in
the results of the other studies reported here—might influence some aspect of language processing.

8. General discussion

In the present study we used computer simulations, naturalistic observation (i.e., a slips of the ear
corpus), and several psycholinguistic experiments to look for a cognitive footprint in human language
behavior of the macro-level measure of network structure known as assortative mixing by degree. Gi-
ven the role that assortative mixing by degree plays in network resilience (as demonstrated in net-
work simulations), we focused our investigations on instances of real and simulated ‘‘failed’’ lexical
retrieval. Although various methodologies were employed in the present study, different words were
used as stimuli, and there was variability in the number of responses that contributed to each analysis,
the same result was observed: a positive correlation was found between the degree/neighborhood
density of a target word and the degree/neighborhood density of the phonological neighbors that were
retrieved when lexical retrieval failed. This result suggests that human language behavior does indeed
seem to be influenced by the macro-level structure of the lexical network, as measured by the network
science metric known as assortative mixing by degree.
4 The proportion of nonword responses observed in the present study is comparable to the proportion of nonword responses
observed in the experiments reported in Shoaf and Pitt (2002). As they note, nonword responses should not be surprising given
that our instructions to the participants (like the instructions they gave to their participants) explicitly stated that words as well as
nonwords were possible percepts.
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To be clear, our exploration of failed lexical retrieval in the present study was not attempting to
provide an account of all types of perceptual errors, to develop an algorithm that would predict the
likelihood of a misperception occurring, or to predict a list of words that would most likely be re-
trieved when lexical retrieval fails. Such questions are interesting, but they are not the focus of the
present investigation. The results of the present studies suggest that the network perspective may
be useful in addressing those questions—and perhaps for optimizing error recovery procedures in
automatic speech recognition in computers (Scharenborg, ten Bosch, Boves, & Norris, 2003)—but we
acknowledge that there may be other factors that lead to perceptual errors than simply phonological
ones.

Importantly, the present findings suggest that the macro-level measure of assortative mixing by
degree is not simply a spurious, mathematical phenomenon observed in a network analysis of phono-
logical word-forms (Vitevitch, 2008). Rather, the present results suggest that the macro-level structure
of the mental lexicon has consequences for psycholinguistic processing. Finding psycholinguistic evi-
dence that is consistent with assortative mixing by degree observed in a network analysis demon-
strates that the tools of network science may be useful in studying the structure of cognitive
representations in memory, and in examining how that structure influences various cognitive pro-
cesses. Borge-Holthoefer and Arenas (2010) argued that measures of cognitive performance serve to
strengthen network analyses of language. Similarly, we suggest that the tools of network science have
much to offer studies of language processing and cognitive psychology more generally.

To examine the mental lexicon with the tools of network science, one must, of course, make several
assumptions. First, one must assume that the lexicon is composed of distinct representations of words
that can be accessed with a well-defined search algorithm. As Turvey and Moreno (2006) point out,
this is a common assumption that is made in many views of the mental lexicon (N.B., spreading acti-
vation is a common method used to model search processes), so it should not be controversial that our
previous network analyses and current empirical work appeal to the same assumption.

Assuming that the lexicon is composed of distinct representations of words raises some questions
about what exactly a word is. For example, should a compound word like pushcart (a cart that one
pushes) be stored as one whole word or as its two constituents? What about opaque compound words,
like buttercup (a flower, not a cup that contains a dairy product)? How are idioms (phrases that figu-
ratively express a concept, such as ‘‘kick the bucket’’ meaning ‘‘to die’’) stored: as individual words or a
single phrase? What is a word in a polysynthetic language, where several morphemes may be put to-
gether to form a complex word that functions like an entire sentence? (See Arbesman et al. (2010a) for
a discussion of some issues related to morphology from the network perspective; see also Celata,
Calderone, & Montermini, 2011 for another approach to the morphology–phonology interface.) Recent
evidence also shows that language users in analytic languages like English are sensitive to the
frequency of occurrence of sentence-length phrases, such as ‘‘I don’t know why,’’ with a high
frequency of occurrence, and ‘‘I want to sit,’’ with a low frequency of occurrence (Arnon & Snider,
2010; cf., Baayen, Hendrix, & Ramscar, 2013). If sentences are stored in the lexicon as well, how might
one represent and examine a sentence using the tools of network science (for one solution see Ferrer i
Cancho, Mehler, Abramov, & Díaz-Guilera, 2007)?

We also assume that these distinct lexical representations are abstract, free of any indexical prop-
erties that convey information about the age, gender, and so on of the speaker (Abercrombie, 1967).
This assumption differs from the view of the mental lexicon being composed of very detailed exemplar
representations that do contain such information (e.g., Goldinger, 1998 Johnson, 1997). We do not,
however, see the use of the tools of network science as being incompatible with certain exemplar
models, such as the exemplar view proposed by McLennan and Luce (2005). In the McLennan and Luce
(2005) view, the lexicon contains both abstract and specific, exemplar-like representations, with ab-
stract representations accessed rapidly, and exemplar-like representations accessed more slowly.
Although the present work does not directly address exemplars per se, we see the present work as
providing insight into how those abstract lexical representations in the McLennan and Luce (2005)
view might be organized in memory (and how that structure might influence processing).

If one assumes the ‘abstract and exemplar representation’ framework proposed by McLennan and
Luce (2005)—as we have in other work from our lab (e.g., Vitevitch & Donoso, 2011)—then some as-
pects of language processing, such as the comprehension of idioms, and sentence-frequency effects
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(e.g., Arnon & Snider, 2010), could emerge from the exemplar-based lexicon rather than the abstract
portion of the lexicon that our present work bears on. The exemplar-based lexicon might also offer an
elegant account of various other word-frequency effects as well.5

Given that one must make some of the same assumptions as mainstream psycholinguistics to use
the tools of network science to examine the mental lexicon, one may wonder what is to be gained by
using the tools of network science to examine the mental lexicon. We believe that mainstream psy-
cholinguistics has focused investigation primarily on the characteristics of individual words (e.g., word
frequency, word length, phonotactic probability, etc.), leading to an ever-increasing list of variables
that affect the retrieval of a word (e.g., Cutler, 1981; Vitevitch, 2002a; Vitevitch, 2007). This attention
to the characteristics of individual words has limited the development of tools to explore the mental
lexicon as a system. It is perhaps the lack of such tools that keeps researchers from exploring certain
topics, such as failed lexical retrieval, a less-explored topic in the current psycholinguistic paradigm.

Network science provides the quantitative tools necessary to examine the mental lexicon and other
cognitive systems at the micro-, meso-, and macro-level. For example, the work of Chan and Vitevitch
(2009, 2010); see also Vitevitch et al. (2011, 2012) examined the structure of the mental lexicon at the
micro-level, and demonstrated that differences among words in the network science measure known
as the clustering coefficient demonstrably influenced various language-related processes.

Siew (2013) examined the structure of the mental lexicon at the meso-level and observed that the
larger network of phonological word-forms could be broken-up into several smaller communities.
More in-depth analyses of the communities revealed that each community contained sequences of
phonemes, such as /Nk/, /IN/ and /¤I/, that occurred frequently in that community and could be com-
bined to form various words found in the community, such as brink, drink and wrinkle. The presence of
these common phoneme sequences in the phonological communities raises the intriguing possibility
that a separate level of representation—such as the layer of phonological segments found in models of
spoken word recognition like TRACE (McClelland & Elman, 1986) and Shortlist (Norris, 1994; Norris &
McQueen, 2008)—may not be required to account for the widely observed effects of phonotactic prob-
ability on language processing (e.g., Vitevitch & Luce, 2005). Instead, such effects could arise from the
information already found in the lexical representations (i.e., word-forms) in the network. If that infor-
mation is processed with a lower resolution, then ‘‘lexical’’ effects, such as competitive neighborhood
density effects, may be observed. However, if that information is processed with a higher resolution,
then ‘‘sub-lexical’’ effects, such as facilitative phonotactic probability effects, may be observed; no
additional level of representation may be required (cf., Vitevitch & Luce, 1999).

In the present case, we demonstrated that a macro-level measure of network structure—assortative
mixing by degree—also influences certain language-related processes. Although many previous studies
have used sophisticated and elegant mathematical methods to find statistical relationships at the
macro-level of a language—such as the work by Zipf (1935), Landauer and Streeter (1973), Baayen
(1991, 2001) and Frauenfelder et al. (1993)—few, if any, of these previous studies demonstrated that these
statistical relationships had behavioral consequences in psycholinguistics tasks. Therefore, the present
study, employing the computational tools of network science and the empirical methods of psycholinguis-
tics, represents a significant advance over previous analyses of the statistical properties of language.

Network science brings to cognitive psychology the unprecedented ability to measure several lev-
els of a cognitive system within a common framework. This common framework, however, should not
5 Models of spoken word recognition have used a variety of approaches to represent differences in word-frequency including
differential resting activation levels of word-detectors, differential thresholds in word-detectors, the order in which the
representations are searched, and having the frequency of occurrence of a word act as a bias at a later decision-stage in processing.
These approaches assume that information regarding the frequency of occurrence of a word is encoded at the level of the word-
form, which may not be the case. Instead, word-frequency might more appropriately reflect the relationship between word-forms
and semantic information (Baayen, 2010), or be represented as part of semantic information (e.g., Bates et al., 2003). If word-
frequency is indeed represented in either the connections between word-forms and semantic information or solely in semantic
representations, then we need not concern ourselves with how to represent word-frequency in a network of phonological word-
forms. A more provocative alternative is that the network model that we proposed in Chan and Vitevitch (2009) and simulated in
Vitevitch et al. (2011)—given the relationship between word frequency and degree/neighborhood density (e.g., Frauenfelder et al.,
1993; Landauer & Streeter, 1973)—already represents information related to word-frequency as degree of a node, and no additional
mechanisms or accounts of word frequency are required.
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be confused with other general frameworks that have also appealed to ‘‘networks,’’ such as connec-
tionism (a.k.a. artificial neural networks). The connectionist framework allowed researchers to exam-
ine processing in a wide range of domains studied by cognitive psychologists. However, artificial neural
networks, especially parallel distributed processing (PDP) networks, had little to say about the nature
of cognitive representations, and even less to say about the structure or organization of cognitive rep-
resentations. Rather, proponents of the PDP approach went so far as to argue that ‘‘. . .information is
not stored as such, but instead is reconstructed in response to probes. . .’’ (McClelland & Rogers,
2003, p. 312). That is, cognitive representations do not exist; they simply emerge from the processes
of the connectionist network. The network science approach as used in the present study suggests in-
stead that representations are stored in memory, and, more important, the way in which those repre-
sentations are organized in memory influences cognitive processing.

Network science offers a unique and powerful set of tools to measure the structure of complex sys-
tems. Important discoveries in the domains of biology, technology, and social interaction have been
made using the tools of this approach (for a brief review see Albert & Barabási, 2002; see also
Boccaletti et al. (2006)). As demonstrated in the present study, adopting this approach in the cognitive
sciences can lead to new discoveries (e.g., how the structure of the mental lexicon influences certain
aspects of language processing), and to an expansion in the range of questions investigated by cogni-
tive scientists (i.e., how speech perception errors can increase our understanding of the spoken word
recognition system). Several other areas in the domain of cognitive psychology have benefitted from
adopting the analytic tools of network science (Goldstone et al., 2008; Griffiths et al., 2007; Hills et al.,
2009; Iyengar et al., 2012; Sporns, 2010; Steyvers & Tenenbaum, 2005). We urge more language and
cognitive scientists to consider how network science might lead to new questions and novel insights.
At the same time we urge language and cognitive scientists to keep in mind that networks are not pan-
aceas, and they should be used judiciously and appropriately (see Butts (2009)).
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Appendix A. Definitions of several network science measures used to assess different levels of a
system

A.1. Micro-level

Measures used to examine the behavior of individual nodes.

A.1.1. Degree
The degree of a node, ki, is the number of connections (or edges) that node i has to other nodes. In

the phonological network examined in Vitevitch (2008), degree is synonymous with the psycholin-
guistic term ‘‘neighborhood density’’ (Luce & Pisoni, 1998).

A.1.2. Clustering coefficient
The extent to which the neighbors of a given node are also neighbors of each other. More precisely,

it is defined as:
Ci ¼
2jfejkgj

kiðki � 1Þ



M.S. Vitevitch et al. / Cognitive Psychology 68 (2014) 1–32 25
ejk refers to the presence of a connection (or edge) between two neighbors (j and k) of node i, |. . .| is
used to indicate cardinality, or the number of elements in the set (not absolute value), and ki refers to
the degree (i.e., neighborhood density) of node i (Watts & Strogatz, 1998). Thus, the (local) clustering
coefficient is the number of connections that actually exist among the neighbors of a given node di-
vided by the number of connections that could possibly exist among the neighbors of a given node.
The clustering coefficient has a range from 0 to 1. When C = 0, none of the neighbors of a target node
are neighbors of each other. When C = 1, every neighbor of a node is also a neighbor of all of the other
neighbors of a node. Chan and Vitevitch (2009) showed in a variety of psycholinguistic tasks that C
influenced the recognition of spoken words such that words with low C were responded to more
quickly and accurately than words with high C. Similarly, Chan and Vitevitch (2010) showed in a vari-
ety of psycholinguistic tasks that C influenced the production of spoken words such that words with
low C were produced more quickly and accurately than words with high C.

A.1.3. Centrality measures
These measures attempt to determine the relative importance of a node in a network, and include:

degree centrality, closeness centrality, betweenness centrality, and eigenvector centrality. Degree cen-
trality is simply the number of connections (or edges) that a node has to other nodes. Thus a node that
is connected to many other nodes in the network (i.e., it has high degree centrality) is thought to be
more ‘‘important’’ than a node that is connected to few other nodes in the network (i.e., it has low de-
gree centrality). Closeness centrality is defined as the inverse of the sum of distances from that node to
all other reachable nodes in the network. More precisely:
ClosenessðiÞ ¼ 1P
jdij
where i is the node of interest, j is another node in the network, and dij is the shortest distance be-
tween these two nodes. See the work of Iyengar et al. (2012) for an example of how closeness central-
ity influences language-related processing. Betweenness centrality measures the number of times a
node appears in the shortest path between two other nodes. A node is said to be high in betweenness
centrality if it lies along many shortest paths. That is, that node lies ‘‘between’’ many other nodes, and
therefore could control the flow of information, etc. Eigenvector centrality is a measure of node impor-
tance that is based on the connections to a given node. The PageRank algorithm used in the Google
search engine uses a variant of eigenvector centrality to rank order web pages, such that a page is
highly ranked if many highly ranked pages link to it.

A.2. Meso-level

Measures used to examine the interaction of nodes at short distances. These measures allow you to
generalize beyond the micro-level measures of individual nodes to groups of nodes that share some
characteristic. The most common assessment at the meso-level is community detection, or finding
groups of nodes such that the connections within the group are denser than the connections between
groups (Girvan & Newman, 2002; Porter, Onnela, & Mucha, 2009). Siew (2013) examined the commu-
nity structure of the phonological network from Vitevitch (2008).

A.3. Macro-level

General measures of network structure. If the network contains several components (i.e., it is dis-
connected), the convention is to compute the average values described below in the largest (or giant)
component.

A.3.1. Average degree <k>
The degree of a node, ki, is the number of other nodes to which node i is connected. The average

degree is the average value of k over all nodes in a network.



26 M.S. Vitevitch et al. / Cognitive Psychology 68 (2014) 1–32
A.3.2. Degree distribution
The probability, P(k), that a randomly chosen node has degree k for every possible k. The degree

distribution is a convenient way to statistically characterize the topology of large networks. Scale-free
networks exhibit a degree distribution that approximate a power-law, P(k) � k�c where the exponent,
c, is usually between 2 and 3.

A.3.3. Average shortest path length (l)
The shortest path length is the length (in number of connections) of the shortest path between

pairs of nodes (i and j). The average shortest path length is the average of the shortest path length over
all pairs of nodes in the network. Note that average shortest path length is typically computed only in
the giant component of a disconnected network because the distance between disconnected nodes is
infinite. This is one of the two criteria (the other being average clustering coefficient) used to determine
whether a network exhibits the characteristics of a small-world network.

A.3.4. Average clustering coefficient
The average clustering coefficient is the average of the clustering coefficient over all nodes in the

network. This is one of the two criteria (the other being average shortest path length) used to determine
whether a network exhibits the characteristics of a small-world network.

A.3.5. Small-world network
For a network to exhibit the characteristics of a small-world network it must have: (1) an average

shortest path length that is comparable to the average shortest path length of a random network with
the same number of nodes and the same average degree, and (2) an average clustering coefficient that is
much greater than the average clustering coefficient of a random network with the same number of
nodes and the same average degree (Watts & Strogatz, 1998).

A.3.6. Scale-free network
Networks with degree distributions that follow a power-law are known as scale-free networks (see

also degree distribution). Scale-free networks were introduced in Barabási and Albert (1999), and
were shown to arise from the network growing (i.e., new nodes are added to the system) such that
new nodes tended to connect to nodes that were already well connected in the network (i.e., prefer-
ential attachment). The presence of a power-law in the degree distribution was thought to be an indi-
cation that the system arose though self-organization. However, as Keller (2005) and others have
shown, there are a number of mechanisms other than growth via preferential attachment that can
produce a power-law degree distribution.

Appendix B

Target words and ‘‘perceptual errors’’ from Simulation 1 with jTRACE.
Target words
 Perceptual errors
lig
 lig^l�

tub
 tu

r^S
 r^b

pul
 par�

p^t
 pat

rut
 rupi�

s^k
 s^ksid�

did
 dip

dip
 did

lid
 lig
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Appendix B (continued)
Target words
 Perceptual errors
tul
 tu

ark
 ar

bar
 bark

dat
 dart

Sut
 Sat

S^t
 Sat

tar
 targ^t�

sis
 si

lat
 lak

sil
 si

sik
 si

sid
 si

sit
 si

blu
 blak�

dru
 drap�

d^k
 d^l

gat
 gad

par
 part

lup
 lus

r^b
 r^S

tri
 trit

b^s
 b^t

k^p
 k^p^l�

gad
 gat

rab
 rad

ril
 rili

rad
 rab

kru
 kru^l�

gru
 grup

l^k
 l^ki

lak
 lat

dil
 dip

rid
 ril

tru
 trup

but
 bust

pap
 pap^

bit
 bi

kap
 kapi

Sit
 Si

Sat
 Sap

pat
 pap

bab
 babi

klu
 kru

dal
 dart�

kip
 ki

lip
 lid
Note: The 10 perceptual errors marked with an asterisk (and their corresponding target word) were excluded from the analysis
that used a more stringent scoring criterion.



28 M.S. Vitevitch et al. / Cognitive Psychology 68 (2014) 1–32
Appendix C

The three lexicons varying in mixing by degree used in Simulation 2 with jTRACE.
Assortative mixing by degree
 Disassortative mixing by degree
 No mixing by degree
ggg
 ^^^
 ^^^

ggp
 ^^a
 ^^b

agg
 ^b^
 a^^

agp
 d^^
 a^b

iii
 aaa
 ba^

iir
 aad
 bb^

bii
 aba
 bbt

bir
 gaa
 tbb

kkk
 bbb
 tba

kkg
 b^b
 taa

^kk
 bbg
 btb

^kg
 ibb
 bta

lll
 ddd
 ddd

llb
 bdd
 ddg

ill
 dkd�
 idd

ilb
 ddS
 idg

ppp
 ggg
 gid

ppa
 ggl
 ggd

lpp
 grg�
 ggu

lpa
 pgg
 ugg

rrr
 iii
 ugi

rrp
 ^ii
 uii

krr
 iia
 gug

krp
 ipi
 gui

sss
 kkk
 kkk

ssr
 akk
 kkp

^ss
 kki
 lkk

^sr
 kuk
 lkp

SSS
 lll
 plk

SSk
 ^ll
 ppk

iSS
 lla
 ppt

iSk
 lkl
 tpp

ttt
 ppp
 tpl

Stt
 ^pp
 tll

tts
 ppd
 ptp

Sts
 pdp
 ptl

uuu
 rrr
 rrr

uut
 ^rr
 rrS

^uu
 rbr
 srr

^ut
 rrd
 srS

^ti
 sss
 Ssr

^tp
 ^ss
 SSr

aiu
 sbs
 SSu

ait
 ssg
 uSS

bSu
 SSS
 uSs

bSp
 ^SS
 uss

dis
 SaS
 SuS
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Appendix C (continued)
Assortative mixing by degree
 Disassortative mixing by degree
 No mixing by degree
dil
 SSg
 Sus

gba
 ttt

gbu
 ^tt

idp
 tbt

idt
 ttg

kul
 uuu

kub
 ^uu

lrd
 uau§
lrs
 uud
Notes: �ddd was most activated instead. �ggg was most activated instead. §uuu was most activated instead.
Appendix D

The stimuli used in Experiments 1 and 2.
Dense neighborhoods
 Sparse neighborhoods
lame
 lace
 dash
 myth

raid
 buck
 dose
 coach

reap
 lease
 firm
 wedge

rose
 lice
 dive
 beg

bead
 rag
 surge
 badge

lash
 tail
 sham
 niece

load
 lock
 wrath
 term

loot
 bag
 null
 folk

ride
 roam
 mop
 numb

nail
 wine
 lobe
 noose

luck
 bite
 niche
 gang

kneel
 gore
 path
 page

lag
 tire
 cuff
 thick

rake
 dial
 balm
 dig

tall
 lamb
 poach
 beam

reek
 peak
 perch
 dish

rope
 seed
 fish
 match

rash
 dot
 retch
 math

tuck
 code
 doll
 foam

shore
 dine
 gum
 bib

root
 rid
 leg
 bath

rum
 bun
 curse
 siege

note
 suit
 fig
 rung

dumb
 pad
 tab
 shed

goat
 dare
 deaf
 nab
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