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Spoken Word Recognition and Serial Recall of Words From Components
in the Phonological Network

Cynthia S. Q. Siew and Michael S. Vitevitch

University of Kansas

Network science uses mathematical techniques to study complex systems such as the phonological
lexicon (Vitevitch, 2008). The phonological network consists of a giant component (the largest
connected component of the network) and lexical islands (smaller groups of words that are
connected to each other, but not to the giant component). To determine if the component that a word
resided in influenced lexical processing, language-related tasks (naming, lexical decision, and serial
recall) were used to compare the processing of words from the giant component and from lexical
islands. Results showed that words from lexical islands were recognized more quickly and recalled
more accurately than words from the giant component. These findings can be accounted for via the
diffusion of activation across a network. Implications for models of spoken word recognition and

network science are also discussed.

Keywords: network science, word recognition, STM, network components, lexical islands

Network science is an emerging interdisciplinary field, which
uses mathematical techniques to analyze a diverse array of com-
plex systems in the biological, telecommunication, cognitive, and
social domains (Barabasi, 2009; Watts, 2004). In these complex
networks, nodes represent entities such as people in a social group,
Internet web pages, or words of a language, and connections
typically represent relationships between any pair of entities; for
instance, friendships among individuals, hypertext links between
web pages, or phonological or semantic similarity between words.
In recent years network science has been applied to the study of
complex cognitive systems, in particular, the semantic and pho-
nological relationships among words in the mental lexicon
(Steyvers & Tenenbaum, 2005; Vitevitch, 2008).

In the language network examined in Vitevitch (2008), nodes
represented phonological word forms and connections represented
phonological similarity between words. Two words were considered
phonologically similar if one word could be transformed to the other
word via the substitution, addition, or deletion of one phoneme in any
position (Landauer & Streeter, 1973; Luce & Pisoni, 1998). Vitevitch
(2008) analyzed the phonological network using the mathematical
and computational tools of network science and found that the net-
work possessed a giant component (the largest connected component
of the network), several lexical islands (smaller connected compo-
nents of the network), and hermits (nodes that do not connect to any
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nodes; known as “isolates” in the network science literature). The
giant component of the phonological network exhibited characteris-
tics of a small-world network: short average path lengths and high
clustering coefficients relative to a network of comparable size, but
with randomly placed connections.

Vitevitch (2008) also observed that the giant component of the
phonological network consisted of 6,508 out of 19,340 words,
about 33.7% of the entire network. In a comparative analysis of
phonological networks of other languages including Spanish,
Mandarin, Hawaiian, and Basque, the proportion of words
residing in the giant components of these phonological net-
works ranged from 34% to 66% (Arbesman, Strogatz, & Vite-
vitch, 2010b). The proportion of nodes found in the giant
components of these phonological networks is small relative to
other real-world networks, where typically almost all nodes are
connected to form a single connected component (Newman,
2001), making this an interesting aspect of the phonological
network to examine further.

Previous studies of other aspects of the phonological network have
demonstrated that the local structure of words (i.e., a word and the
words that immediately surround that word) influences various as-
pects of spoken word recognition and production, word-learning, as
well as short- and long-term memory processes (Chan & Vitevitch,
2009, 2010; Goldstein & Vitevitch, 2014; Vitevitch, Chan, & Rood-
enrys, 2012). Chan and Vitevitch (2009, 2010) showed that the
clustering coefficient, or C, of a word has measurable effects on
psycholinguistic tasks, such as perceptual identification, lexical deci-
sion, and picture naming. Clustering coefficient refers to the extent to
which phonological neighbors of a word are also neighbors of each
other (Watts & Strogatz, 1998). The phonological neighbors of high
C words tend to be neighbors of each other, whereas the phonological
neighbors of low C words do not tend to be neighbors of each other.
Chan and Vitevitch (2009, 2010) found in various tasks that low C
words were responded to more accurately and quickly than high C
words.
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It has also been shown that the structure of the phonological
network at the macro-level, which describes the overall structure
of the network, influences various aspects of language processing
(Vitevitch, Chan, & Goldstein, 2014). In particular, assortative
mixing by degree, which refers to the tendency for highly con-
nected nodes to be connected to other highly connected nodes in
the network (Newman, 2002), represents one way to examine the
macro-level structure of the phonological network. Vitevitch et al.
(2014) investigated instances of failed lexical retrieval and found
that errors made by participants reflected the presence of high
assortative mixing by degree in the phonological network. This
result suggests that phonological representations might indeed be
organized as a complex network in the mental lexicon, not just at
a micro-level as demonstrated by the clustering coefficient studies
conducted by Chan and Vitevitch (2009, 2010), but also at a
higher, macro-level as exemplified by assortative mixing by de-
gree. The micro- and macro-level organization found in the mental
lexicon could have important implications for understanding cog-
nitive and lexical processes. For a computational analysis of the
meso-level (or the structure of the network at a scale between the
micro- and macro-level), see Siew (2013).

In the present study we used the network science approach to
investigate another macro-level feature of the network: the various
connected components that make up the phonological network.
Specifically we asked whether the component a word is in (either
the giant component or one of the lexical islands) influences
processing in any way. If any processing differences exist between
words that are found in either the giant component or lexical
islands, this would further suggest that the phonological lexicon
may be organized as an interconnected network, and further dem-
onstrate that the overall macro-level structure of the lexicon has
implications for lexical processing.

To date, little research has explicitly focused on examining
words residing in lexical islands. One study by Arbesman, Stro-
gatz, and Vitevitch (2010a) compared the words found in the
lexical islands of English and Spanish, and found that Spanish
words belonging to the same lexical island tended to be both
phonologically and semantically related, whereas English words in
the same island tended to be only phonologically related. This
finding was offered as a possible explanation for the seemingly
contradictory result regarding phonological neighborhoods in
Spanish observed by Vitevitch and Rodriguez (2005). Vitevitch
and Rodriguez found that Spanish words with many phonological
neighbors were recognized more quickly than Spanish words with
few phonological neighbors—the opposite of what is typically
observed in English (Luce & Pisoni, 1998). In addition to being
one of the few studies examining network components, the Arbes-
man et al. (2010a) study is also an example of how network
analysis could provide additional insights into the lexical processes
underlying spoken word recognition.

Other studies investigating the influence of various network
science metrics, such as the clustering coefficient on language
processing (e.g., Chan & Vitevitch, 2009, 2010; Goldstein &
Vitevitch, 2014; Vitevitch et al., 2012), used words from the giant
component as stimuli. Recall, however, that the giant component
contained only 33.7% of the words from the entire mental lexicon.
The majority of words in the lexicon are either lexical hermits, that
is, words that do not have any phonological neighbors, or reside in
smaller components, small groups of words that are connected to

each other, but disconnected from the giant component (referred to
as lexical islands). In complex networks from other domains, an
overwhelming majority of nodes are located within the giant
component (Newman, 2001). Therefore, it is common practice to
view smaller components and isolates as outliers, and exclude
them from further analysis (e.g., Newman, 2001; Steyvers &
Tenenbaum, 2005). In the phonological network, however, the
majority of words are found outside of the giant component in the
lexical islands and as hermits. It seems counterproductive to treat
this large number of words as outliers and exclude them from
further investigation. Rather, we argue that it is imperative that we
extend our investigation to such words.

The present work is, to the best of our knowledge, the first
experimental investigation of potential processing differences be-
tween words residing in the giant component and words residing in
lexical islands (see also Vitevitch & Castro, 2015). For ease of
exposition, the term “giant component words” will be used to refer
to words residing in the giant component of the phonological
network, and the term “lexical island words” will be used to refer
to words residing in one of the lexical islands, which are discon-
nected from the giant component. In the present studies the giant
component words were matched to the lexical island words on
various psycholinguistic and network science characteristics that
are known to influence processing. To examine how the location of
a word in the lexical network might influence processing, we
examined how participants responded to giant component words
and to lexical island words in a variety of tasks commonly used in
cognitive psychology, including word naming (Experiment 1),
lexical decision (Experiment 2), and serial recall (Experiment 3).

Experiment 1

In the present experiment, an auditory naming task was used to
examine how the location of a word in the lexical network might
affect spoken word recognition. In the auditory naming task, a
word is presented to participants over a set of headphones, and
they must simply repeat the word as quickly and accurately as
possible. We first consider a number of widely held assumptions
about word recognition to make an initial prediction regarding how
the location of a word in the lexical network might affect spoken
word recognition.

In a network analysis of the phonological lexicon, Siew (2013)
observed that giant component words tend to be short, monosyl-
labic words, whereas lexical island words tend to be long, multi-
syllabic words. Given the well-known relationship between word
frequency and word length—commonly used words tend to be
short words and less commonly used words tend to be longer
words (Zipf, 1935)—we reasoned that the process of lexical re-
trieval might occur more often in the giant component than in the
lexical islands.

We further reasoned that the common occurrence of lexical
retrieval in the giant component may grant some sort of processing
advantage to the giant component words over the lexical island
words. For instance, activation of nearby neighbors of giant com-
ponent words and lexical island words could spread to and par-
tially activate giant component words and lexical island words,
indirectly strengthening these partially activated items (Vitevitch
& Goldstein, 2014; see also Nelson, McKinney, Gee, & Janczura,
1998). Given that lexical retrieval occurs more often within the
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giant component than within lexical islands, it is reasonable to
speculate that more frequent activation of nearby neighbors of
giant component words might result in greater accumulation of
“indirect” activation over time for these words compared with
lexical island words. The strengthening of giant component words
via accumulated indirect activation would therefore afford the
giant component words a processing advantage over lexical island
words.

From the earliest models (e.g., Morton, 1969) to more contem-
porary models of word recognition (e.g., Strauss, Harris, & Mag-
nuson, 2007), the processing advantage for commonly occurring
words over words that occur less often—the well-known word
frequency effect in word recognition—is often represented via
differences in activation thresholds for words that vary in fre-
quency of occurrence. We adopt this commonly used approach in
the present case and suggest that the strengthening of giant com-
ponent words that occurs due to accumulated indirect activation
may result in the giant component words having a lower activation
threshold than lexical island words (even when word frequency is
the same for both types of words, as is the case for the words used
in the present experiments). The difference in activation threshold
as a function of accumulated indirect activation could result in
processing differences. Specifically, even though giant component
words and lexical island words in the present experiments were
matched on a number of relevant psycholinguistic characteristics,
we expected that the more common experience of retrieving words
from the giant component would result in a lower activation
threshold for such words and therefore more rapid and accurate
naming for giant component words compared with lexical island
words.

Method

Participants. Twenty native English speakers were recruited
from the introductory psychology subject pool at the University of
Kansas. All participants had no previous history of speech or
hearing disorders and received partial course credit for their par-
ticipation.

Materials. Ninety-six English words were selected as stimuli
for this experiment. Half of the stimuli were selected from the
giant component of the phonological network and half were se-
lected from various lexical islands in the phonological network. Of
the 19,340 words in the phonological network, 6,508 words
(33.65%) resided in the giant component, and 2,567 words
(13.27%) were found in lexical islands of sizes ranging from 2 to
53 words. The lexical island words were selected such that they
came from different islands of varying sizes (2 to 53). A male
native speaker of American English (Michael S. Vitevitch) pro-
duced the stimuli by speaking at a normal speaking rate and
volume into a high-quality microphone in an Industrial Acoustics
Company (Bronx, NY) sound-attenuated booth. Individual sound
files for each word were created from the digital recording and
edited with SoundEdit 16 (Macromedia, Inc.; San Francisco, CA).
All sound files were ensured to have the same amplitude by using
the Normalization function in SoundEdit 16.

Table 1 shows the means and standard deviations of several
psycholinguistic characteristics of giant component and lexical
island words. A list of the stimuli is included in Appendix A.

Table 1
Characteristics of Giant Component and Lexical Island Words
Used in Experiments 1-3

Giant component Lexical islands

Lexical characteristic M (SD) M (SD)
Number of phonemes 5.35(0.53) 5.40 (0.64)
Subjective familiarity 6.60 (0.78) 6.77 (0.43)
Log frequency 0.93 (0.71) 1.11 (0.77)
Neighborhood density 2.73 (0.84) 2.83 (0.72)
Log neighborhood frequency 1.70 (0.53) 1.65 (0.47)
Mean positional probability 0.0533 (0.00852) 0.0542 (0.00760)
Mean biphone probability 0.00562 (0.00180)  0.00590 (0.00194)
Clustering coefficient 0.274 (0.353) 0.236 (0.311)
Onset duration (ms) 58 (3) 58 (4)
Stimuli duration (ms) 556 (92) 583 (70)
Overall file duration (ms) 675 (93) 700 (72)

Word length. Word length refers to the number of phonemes
in a given word. Giant component words had a mean word length
of 5.35 (§D = 0.53) and lexical island words had a mean word
length of 5.40 (SD = 0.64), F(1,94) < 1, p = .73.

Subjective familiarity. Subjective familiarity was measured
on a 7-point scale (Nusbaum, Pisoni, & Davis, 1984). The rating
scale ranged from 1 (You have never seen the word before) to 4
(You recognize the word, but do not know the meaning) to 7 (You
recognize the word and are confident that you know the meaning
of the word). Giant component words had a mean familiarity value
of 6.60 (SD = 0.78) and lexical island words had a mean famil-
iarity value of 6.77 (SD = 043), F(1, 94) = 1.79, p = .19.
Therefore, both sets of words were considered highly familiar.

Word frequency. Word frequency refers to how often a given
word occurs in a language. Log-base 10 of the raw frequency
counts from Kucera and Francis (1967) were used. Giant compo-
nent words had a mean word frequency of 0.93 (SD = 0.71) and
lexical island words had a mean word frequency of 1.11 (SD =
0.77), F(1, 94) = 1.45, p = .23. Log-base 10 of the frequency
counts from the more current SUBTLEX, 4 corpus (Brysbaert &
New, 2009) were also obtained from the English Lexicon Project
(Balota et al., 2007). Based on these frequency counts, giant
component words had a mean word frequency of 2.39 (SD = 0.86)
and lexical island words had a mean word frequency of 2.48 (SD =
0.83), 1(92) < 1, p = .63.

Neighborhood density. Neighborhood density refers to the
number of words that are phonologically similar to a given word
(Luce & Pisoni, 1998). A word was considered to be phonologi-
cally similar to a target word if a single phoneme could be
substituted, added, or deleted at any position of the target word to
form that word. In the context of the phonological network in
Vitevitch (2008), phonological neighborhood density corresponds
to the network science term degree. Giant component words had a
mean neighborhood density of 2.73 neighbors (SD = 0.84) and
lexical island words had a mean neighborhood density of 2.83
neighbors (SD = 0.72), F(1,94) < 1, p = .52.

Neighborhood frequency. Neighborhood frequency is the
mean word frequency of the phonological neighbors of a word.
Word frequency counts were obtained from Kucera and Francis
(1967) and converted to log-base 10 values. Giant component
words had a mean log neighborhood frequency of 1.70 (SD =



publishers.

gical Association or one of its allied

This document is copyrighted by the American Psycholo

ted broadly.

1al user

This article is intended solely for the personal use of the

4 SIEW AND VITEVITCH

0.53) and lexical island words had a mean log neighborhood
frequency of 1.65 (SD = 0.47), F(1,94) < 1, p = .60.

Phonotactic probability. The phonotactic probability of a
word refers to the probability that a segment occurs in a certain
position of a word (positional segment probability), and the prob-
ability that two adjacent segments co-occur (biphone probability;
Vitevitch & Luce, 2004). Giant component words had a mean
positional segment probability of 0.0533 (SD = 0.00852) and
lexical island words had a mean positional segment probability of
0.0542 (SD = 0.00760), F(1, 94) < 1, p = .57. Giant component
words had a mean biphone probability of 0.00562 (SD = 0.00180)
and lexical island words had a mean biphone probability of
0.00590 (SD = 0.00194), F(1,94) < 1, p = 48.

Clustering coefficient. In the context of a phonological net-
work, the clustering coefficient, C, refers to the extent to which the
phonological neighbors of a word are also neighbors of each other. To
calculate clustering coefficient, the number of connections between
neighbors of a target word was counted and divided by the number of
possible connections that could exist among the neighbors.
Therefore, the clustering coefficient is the ratio of the actual
number of connections existing among neighbors to the number
of all possible connections among neighbors if every neighbor
were connected (Batagelj & Mrvar, 1988). For a more precise
definition of the clustering coefficient see Watts and Strogatz
(1998), and for a definition of clustering coefficient in the
context of a phonological network (and for how clustering coef-
ficient differs from neighborhood density/degree) see Chan and Vite-
vitch (2009, 2010). C ranges from O to 1; when C = 1 all the
neighbors of a word are neighbors of each other, and when C = 0 no
neighbors of the word are neighbors of each other. Giant component
words had a mean C of 0.274 (SD = 0.353) and lexical island words
had a mean C of 0.236 (SD = 0.311), F(1,94) < 1, p = .58.

Duration. The duration of the stimulus sound files was equiva-
lent across both sets of words. The mean overall duration of sound
files was 675 ms (SD = 93) for giant component words and 700 ms
(SD = 72) for lexical island words, F(1, 94) = 2.18, p = .14. The
mean onset duration, measured from the beginning of the sound file
to the onset of the stimuli, was 58 ms (SD = 3) for giant component
words and 58 ms (SD = 4) for lexical island words, F(1,94) < 1,p =
.59. The mean stimulus duration, measured from the onset to the
offset of the word, was 556 ms (SD = 92) for giant component words
and 583 ms (SD = 70) for lexical island words, F(1,94) = 2.64,p =
A1

Uniqueness points. The uniqueness point of a word is the point,
as measured from the beginning of the word, at which the word begins
to diverge from all the other words in the lexicon (Marslen-Wilson,
1987). Studies have shown that uniqueness point plays a role in
lexical decision and gating tasks (Marslen-Wilson, 1987; Tyler
& Wessels, 1983). Giant component words had a mean unique-
ness point of 4.13 phonemes (SD = 0.94) and lexical island
words had a mean uniqueness point of 3.92 phonemes (SD =
1.07), F(1, 94) = 1.02, p = .31. The values of the uniqueness
points here represent the position of the last overlapping pho-
neme for each word (see Luce, 1986).

Onset phoneme. To minimize acoustic and articulatory arti-
facts in the naming task (Treiman, Mullennix, Bijeljac-Babic, &
Richmond-Welty, 1995), stimuli were selected such that the first
phoneme was a consonant. Furthermore, chi-square analyses re-
vealed that no particular phoneme was overrepresented in the

onsets of giant component words and lexical island words (x° =
10.21, df = 14, p = .81).

Procedure. Participants were tested individually. Each partici-
pant was seated in front of an iMac computer that was connected to
a New Micros (Dallas, TX) response box. PsyScope 1.2.2 was used to
randomize and present the stimuli via Beyerdynamic (Berlin, Ger-
many) DT100 headphones at a comfortable listening level. A re-
sponse box containing a dedicated timing board provided millisecond
accuracy for the recording of response times.

In each trial, the word READY appeared on the screen for 500
ms. Participants heard one of the randomly selected stimuli and
were instructed to repeat the word as quickly and accurately as
possible. Reaction times were measured from stimulus onset to the
onset of the participant’s verbal response. Verbal responses were
also recorded for offline scoring of accuracy. The next trial began
1 s after the participant’s response was made. Prior to the exper-
imental trials, each participant received five practice trials to
become familiar with the task; these trials were not included in the
subsequent analyses. There was a total of 96 trials and the exper-
iment lasted approximately 10 min.

Results

Both reaction times (RTs) and accuracy rates were the dependent
variables of interest. Accuracy was scored offline by Cynthia S. Q.
Siew. Trials containing mispronunciations of the word or responses
that triggered the voice-key prematurely (e.g., coughing, “uh”) were
coded as incorrect and excluded from the analyses. Trials with RTs
that were less than 500 ms or more than 2,000 ms were considered to
be outliers and also excluded. Excluded trials accounted for less than
2.92% of the data.

The convention in psycholinguistic research is to perform two
types of analyses on participant and item means, treating participants
and items as random factors in each of these analyses, respectively.
However, there is a growing movement in the field to use alternative
approaches such as multilevel modeling (Locker, Hoffman, &
Bovaird, 2007) and hierarchical regression (e.g., Yap & Balota,
2009). In the following analyses we used hierarchical regression to
assess the extent to which a variable (whether a word was found in the
giant component or lexical islands) accounts for additional variability
in the item means, over and above the variability that is already
accounted for by other psycholinguistic and network characteristics
(e.g., word frequency, neighborhood density). Therefore, item-level
regression analyses were conducted on the mean RTs and accuracies
for the stimuli.

A two-step hierarchical approach was used. Number of pho-
nemes, familiarity, frequency, neighborhood density, neighbor-
hood frequency, positional and biphone probabilities, C, and stim-
ulus duration were entered in Step 1. Location, a dummy coded
variable indicating whether a word resided in the giant component
(coded as “0”) or in a lexical island (coded as “1”), was entered in
Step 2. Again, partitioning the regression analysis into two steps
was done to determine if location of the word within the network
accounted for additional variance over previously entered vari-
ables.

Reaction times. Table 2 presents the results of the regression
analysis on naming RTs. In Step 1, frequency, positional probability,
and stimulus duration significantly predicted naming RTs. Frequency
was negatively correlated with RTs, standardized = —0.22,
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Table 2
Hierarchical Regression Results for Reaction Times From Experiment 1
Variable B SE t P R? AR?
Step 1
Number of phonemes .019 10.45 0.20 .84
Subjective familiarity —.061 9.14 —0.68 .50
Log frequency —.220 7.74 —2.44 .02"
Neighborhood density —.032 6.65 —0.39 .69
Log neighborhood frequency .148 10.65 1.76 08"
Positional probability 344 922.30 2.96 .004™
Biphone probability —.208 4336.00 —1.65 .10
Stimuli duration .633 0.07 7.00 <.001™"
Clustering coefficient —.061 15.56 —0.75 46
4827
Step 2
Location (dummy variable) —.177 10.00 —2.24 .03"
S .029*
Tp<.10. *p<.05. "p<.0l. *p<.00l.

#(86) = —2.44, p < .05, replicating the well-known effect that high
frequency words tend to be responded to more quickly than low
frequency words. Positional probability was positively correlated with
RTs, standardized 3 = 0.344, #(86) = 2.96, p < .01, such that words
with high phonotactic probability were responded to less quickly than
words with low phonotactic probability (replicating results reported in
Vitevitch & Luce, 1998). It is not surprising that stimulus duration
was positively correlated with RTs, standardized 3 = 0.633, #(86) =
7.00, p < .001, such that words of longer durations were responded to
less quickly than words of shorter duration. Together, the variables
entered at Step 1 explained 48.2% of the variance in naming RTs,
accounting for a significant proportion of the variance in naming RTs,
R* = 482, F(9, 86) = 8.90, p < .001.

In Step 2, location significantly predicted naming RTs, stan-
dardized B = —0.177, #(85) = —2.24, p < .05, such that lexical
island words were responded to more quickly than giant component
words. The influence of location accounted for an additional 2.9% of
the variance, AR*> = .029, F(1, 85) = 5.03, p < .05. Together, the
variables entered at both steps explained 51.1% of the variance in
naming RTs, accounting for a significant proportion of variance in
naming RTs, R? = 511, F(10, 85) = 8.89, p < .001.

Accuracy. Table 3 presents the results of the regression anal-
ysis on naming accuracies. In Step 1, only familiarity significantly
predicted naming accuracies, standardized 3 = 0.328, #86) =
2.84, p < .01, such that more familiar words were responded to
more accurately than less familiar words. Together, the variables
entered at Step 1 explained 14.8% of the variance in naming
accuracies, which did not account for a significant proportion of
variance in naming accuracies, R> = .148, F(9, 86) = 1.66, p=
A1,

In Step 2, location did not significantly predict naming accu-
racy, standardized B = 0.112, #(85) = 1.08, p = .28, nor did it
explain a significant proportion of variance, AR* = .012, F(1,
85) = 1.17, p = .28. Together, the variables entered at both steps
explained 16.0% of the variance in naming accuracies, which did
not account for a significant proportion of variance in naming
accuracies, R> = .160, F(10, 85) = 1.62, p = .12,

Table 4 shows the subject and item RT and accuracy means for
the lexical island and giant component words. RTs for lexical
island words (M = 956 ms, SD = 55) were faster than RTs for
giant component words (M = 968 ms, SD = 72), and this was
consistent across subject means as well.

Table 3
Hierarchical Regression Results for Accuracy Rates From Experiment 1
Variable B SE t P R? AR?
Step 1
Number of phonemes .080 0.89 0.66 51
Subjective familiarity 328 0.78 2.84 .006™
Log frequency .053 0.66 0.46 .65
Neighborhood density —.021 0.57 —0.20 .84
Log neighborhood frequency .054 0.91 0.50 .62
Positional probability .084 79.13 0.56 .58
Biphone probability —.128 372.00 —0.79 43
Stimuli duration .017 0.006 —0.15 .88
Clustering coefficient .081 1.34 0.78 44
.148
Step 2
Location (dummy variable) 112 0.88 1.08 28
.16 012

= p < 0l
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Table 4
Subject and Item Means for Giant Component and Lexical
Island Words in Experiment 1

Giant component

Lexical island words words
M (SD) M (SD)

Subject means

Reaction times (ms) 955 (107) 967 (110)

Accuracy (%) 97.71 (3.09) 96.46 (4.06)
Item means

Reaction times (ms) 956 (55) 968 (72)

Accuracy (%) 97.71 (3.41) 96.46 (4.94)

Accuracy rates were very high for both lexical island and giant
component words, although slightly higher accuracy rates were
observed for the lexical island words (M = 97.71%, SD = 3.41)
compared with giant component words (M = 94.46%, SD = 4.94).
This was consistent across subject means as well. The fact that
accuracy rates are close to ceiling could explain why the location
of word within the network did not significantly affect accuracy
rates. This also suggests that there was no speed—accuracy trade-
off in the performance of this task.

Discussion

Recall (a) the relationship between word length and word fre-
quency (Zipf, 1935), and (b) the tendency for giant component
words to be short and lexical island words to be long. Given these
relationships, we reasoned that the process of lexical retrieval
occurs more often in the giant component than in the lexical
islands, bestowing a practice-effect-like processing advantage to
the giant component words over the lexical island words. Contrary
to our intuition, the results of the word naming task showed that
lexical island words were processed more quickly than giant
component words. Because every behavioral task used in labora-
tory settings has advantages and disadvantages, we sought to
replicate this result in another task in Experiment 2 to increase our
confidence that the observed effect was not spurious, or due to the
characteristics of a particular task.

Experiment 2

Given the somewhat counterintuitive finding in Experiment 1
we sought to replicate the effect in a different psycholinguistic
task, namely the lexical decision task. In this task, participants are
presented with either a word or a nonword over a set of head-
phones. In this standard psycholinguistic task, participants are
asked to decide as quickly and accurately as possible whether the
given stimulus is a real word in English or a nonsense word. As in
the auditory naming task used in Experiment 1, the lexical decision
task allows for both accuracy and RT to be assessed.

Method

Participants. Twenty native English speakers were recruited
from the introductory psychology subject pool as described in
Experiment 1. All participants were right-handed and had no

previous history of speech or hearing disorders. None of the
participants in the present experiment took part in Experiment 1.

Materials. The word stimuli for the present experiment con-
sisted of the same 96 words used in Experiment 1. In addition, a
list of 96 phonotactically legal nonwords was constructed by
replacing a phoneme (at any position except the first and last
positions) of the word stimuli with another phoneme. For instance,
the nonword porcel (/poisl/) was created by replacing /a/ in parcel
(/paisl/) with /o/. The phonological transcriptions of nonwords are
listed in Appendix B.

The nonwords were recorded by the same male speaker in a
similar manner as in Experiment 1. The same method for editing
and digitizing the word stimuli was used to create individual sound
files for each nonword.

Duration. The duration of the stimulus sound files was equiv-
alent across both words and nonwords. The mean overall duration
of sound files was 687 ms (SD = 84) for words and 665 ms (SD =
75) for nonwords, F(1, 190) = 3.70, p = .06. The mean onset
duration, measured from the beginning of the sound file to the
onset of the stimuli, was 58 ms (SD = 3) for words and 57 ms
(SD = 5) for nonwords, F(1, 190) < 1, p = .40. The mean
stimulus duration, measured from the onset to the offset of the
word, was 569 ms (SD = 82) for words and 550 ms (SD = 75) for
nonwords, F(1, 190) = 2.84, p = .09.

Procedure. Participants were tested in groups no larger than
three. As in Experiment 1, each participant was seated in front of
an iMac computer that was connected to a New Micros response
box. PsyScope 1.2.2 was used to randomize and present the stimuli
via BeyerDynamic DT100 headphones at a comfortable listening
level. The response box contained a dedicated timing board, pro-
viding millisecond accuracy for the recording of response times.

In each trial, the word READY appeared on the screen for 500
ms. Participants heard one of the randomly selected stimuli and
were instructed to decide, as quickly and accurately as possible,
whether the item heard was a real English word or a nonword. If
the item was a word, participants pressed the button labeled
WORD with their right (dominant) index finger. If the item was a
nonword, participants pressed the button labeled NONWORD with
their left index finger. Reaction times were measured from stim-
ulus onset to the onset of the participant’s button press. The next
trial began 1 s after the participant’s response was made. Prior to
the experimental trials, each participant received eight practice
trials to become familiar with the task; these trials were not
included in the subsequent analysis. There was a total of 192 trials
and the experiment lasted approximately 15 min.

Results

Both RTs and accuracy rates were the dependent variables of
interest. In lexical decision, only accurate responses for word
stimuli were analyzed. Trials with RTs that were less than 500 ms
or more than 2,000 ms were excluded. Excluded trials accounted
for less than 9.53% of the data. As in Experiment 1, hierarchical
regression analyses were conducted on the item means.

Reaction times. Table 5 presents the results of the regression
analysis on the lexical decision RTs. In Step 1, familiarity, positional
probability, and stimulus duration significantly predicted lexical de-
cision RTs. Familiarity was negatively correlated with RTs, standard-
ized B = —0.475, (86) = —5.12, p < .001, such that more familiar
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Table 5
Hierarchical Regression Results for Reaction Times From Experiment 2
Variable B SE t p R? AR?
Step 1
Number of phonemes .039 17.05 0.40 .69
Subjective familiarity —.475 14.91 =512 <.001™*
Log frequency —.158 12.62 —1.70 097
Neighborhood density —.089 10.90 —1.06 .29
Log neighborhood frequency .027 17.37 0.31 .76
Positional probability 284 1,505.00 2.37 02"
Biphone probability —.070 7,074.00 —0.53 .60
Stimuli duration 341 0.11 3.66 <.001™*
Clustering coefficient —.113 25.38 —1.36 18
4527
Step 2
Location —.203 16.20 —2.52 01"
490" .038"
fp<.10. *p<.05. ™ p<.00l.

words were responded to more quickly than less familiar words.
Positional probability was positively correlated with RTs, standard-
ized B = 0.284, #(86) = 2.37, p < .05, such that words with high
phonotactic probability were responded to less quickly than words
with low phonotactic probability. Stimulus duration was positively
correlated with RTs, standardized 3 = 0.341, #(86) = 3.66, p < .001,
such that words of longer durations were responded to less quickly
than words of shorter durations. Together, the variables entered at
Step 1 explained 45.2% of the variance in lexical decision RTs,
accounting for a significant proportion of the variance in lexical
decision RTs, R> = 452, F(9, 86) = 7.86, p < .001.

In Step 2, location significantly predicted lexical decision RTs,
standardized B = —0.203, #(85) = —2.52, p = .01, such that lexical
island words were responded to more quickly than giant component
words, and accounted for an additional 3.8% of the variance, AR* =
.038, F(1, 85) = 6.35, p < .05. Together, the variables entered at both
steps explained 49.0% of the variance in lexical decision RTs, ac-
counting for a significant proportion of variance in lexical decision
RTs, R* = .490, F(10, 85) = 8.15, p < .001.

Accuracy. Table 6 presents the results of the regression anal-
ysis on the lexical decision accuracy rates. In Step 1, familiarity

and frequency significantly predicted lexical decision accuracy
rates. Familiarity was positively correlated with accuracy, stan-
dardized B = 0.616, #(86) = 7.83, p < .001, such that more
familiar words were responded to more accurately than less famil-
iar words. Frequency was also positively correlated with accuracy
rates, standardized 3 = 0.192, #(86) = 2.44, p < .05, such that
high frequency words were responded to more accurately than low
frequency words. Together, the variables entered at Step 1 ex-
plained 60.6% of the variance in lexical decision accuracy rates,
accounting for a significant proportion of variance in lexical de-
cision accuracies, R* = .606, F(9, 86) = 14.69, p < .001.

In Step 2, location did not significantly predict lexical decision
accuracy, standardized B = 0.058, #(85) = 0.82, p = .41, nor did
it explain a significant proportion of variance, AR* = .003, F(1,
85) = 0.62, p = .44. Together, the variables entered at both steps
explained 60.6% of the variance in lexical decision accuracy rates,
accounting for a significant proportion of variance in lexical de-
cision accuracies, R? = .606, F(10, 85) = 13.24, p < .001.

Table 7 shows the subject and item RT and accuracy means
for the lexical island and giant component words. Reaction
times for lexical island words (M = 978 ms, SD = 83) were

Table 6
Hierarchical Regression Results for Accuracy Rates From Experiment 2
Variable B SE t p R’ AR?
Step 1
Number of phonemes —.013 2.03 —0.15 .88
Subjective familiarity 616 1.77 7.83 <.001"
Log frequency 192 1.50 2.44 .02"
Neighborhood density —.061 1.29 —0.86 .39
Log neighborhood frequency —.050 2.07 —0.68 .50
Positional probability .027 178.90 0.27 .79
Biphone probability —.032 841.30 —0.29 7
Stimuli duration 157 0.01 1.99 057
Clustering coefficient .073 3.02 1.04 .30
606"
Step 2
Location (dummy variable) .058 1.99 0.82 41
609" .003

fp<.10. *p<.05 **p<.00l.
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Table 7
Subject and Item Means for Giant Component and Lexical
Island Words in Experiment 2

Giant component

Lexical island words words
M (SD) M (SD)
Subject means
Reaction times (ms) 974 (71) 1,006 (92)
Accuracy (%) 93.02 (5.33) 87.92 (6.43)
Item means
Reaction times (ms) 978 (83) 1,019 (114)
Accuracy (%) 93.02 (8.92) 87.92 (17.74)

faster than RTs for giant component words (M = 1,019 ms,
SD = 114), and this was consistent across subject means as
well.

Accuracy rates were very high across both lexical island and
giant component conditions, although higher accuracy rates were
observed for the lexical island words (M = 93.02%, SD = 8.92)
compared with giant component words (M = 87.92%, SD =
17.74). This was consistent across subject means as well.

Discussion

The results of the lexical decision task replicated the somewhat
counterintuitive results obtained in the word naming task in Ex-
periment 1—lexical island words were responded to more quickly
than giant component words. It is important to emphasize that the
giant component and lexical island words were closely matched on
a number of network and psycholinguistic variables that are known
to influence lexical processing. Given the matching of relevant
psycholinguistic variables, widely accepted models of spoken
word recognition would not predict any difference in the responses
to these two sets of words (e.g., Marslen-Wilson, 1987; McClel-
land & Elman, 1986; Norris & McQueen, 2008; Luce & Pisoni,
1998). Nevertheless, the results of Experiments 1 and 2 showed
that lexical island words are processed more quickly than giant
component words in both naming and lexical decision tasks. This
result suggests that there may be some psychological validity to
the idea that phonological word-forms in the mental lexicon are
organized as a complex network, and, more important, that where
a word is located in the network has an important influence on
lexical processing.

Although (a) the relationship between word length and word
frequency (Zipf, 1935), and (b) the tendency for giant component
words to be short and lexical island words to be long led us to
believe that the process of lexical retrieval might occur more often
in the giant component than in the lexical islands, and bestow some
sort of processing advantage to the giant component words over
the lexical island words, the results of Experiments 1 and 2 are
inconsistent with that intuition. Instead, lexical island words ap-
pear to have a processing advantage over comparable giant com-
ponent words.

The assumptions of mainstream psycholinguistics led us to
make a reasonable but incorrect prediction regarding how the
location of a word in the lexical network might affect spoken word
recognition. To account for the processing advantage of lexical
island words over comparable giant component words we instead

appeal to the network framework described in Chan & Vitevitch
(2009, 2010) and simulated with a simple diffusion mechanism in
Vitevitch, Ercal, and Adagarla (2011).

In Vitevitch et al. (2011) activation was defined as a limited
cognitive resource that spread unimpeded between connected
nodes, and did not decay over time (compare the models of
Anderson (1983); Collins and Loftus (1975); MacKay (1990), and
others for very different assumptions about activation, how it
spreads, decays, and so forth). In the very simple model used in
Vitevitch et al. (2011), the target node received an initial burst of
activation of 100 arbitrary units. A portion of the initial activation
was retained by the target word, and the remaining amount of
activation that was not retained in the target node was equally
divided (i.e., spread) among the neighbors of the target word
(referred to as one-hop neighbors).

Similar to the target node, each one-hop neighbor retained a
portion of the activation it received from the target node, with the
remaining activation being spread equally to the nodes to which it
was connected (including the target, other one-hop neighbors, and
nodes connected to the one-hop neighbors but not connected to the
target word; such nodes are referred to as two-hop neighbors of the
target word). This process of a node retaining a certain amount of
activation and spreading the rest of the activation to nodes that it
was connected to—resulting in activation being spread back and
forth between the target, one-hop neighbors, and two-hop neigh-
bors— occurred for 10 discrete time steps, at which point retrieval
of the target items was said to occur.

The activation value in the target node was mapped inversely to
response latency, such that higher activation values indicated that
lexical retrieval occurred rapidly, and lower activation values
indicate that lexical retrieval required more time to be completed,
and directly to accuracy, such that higher activation values indi-
cated a high probability of accurate retrieval, and lower activation
values indicated a low probability of accurate retrieval. With this
very simple diffusion model Vitevitch et al. (2011) were able to
account for the psycholinguistic observations reported in Chan and
Vitevitch (2009): Low C words were more quickly and accurately
recognized than high C words.

In the simulations reported in Vitevitch et al. (2011) the size of
the 2-hop networks was the same. The only difference in the
networks examined in Vitevitch et al. (2011) was the number of
connections among the 1-hop neighbors (i.e., the clustering coef-
ficient, C). In the present study, the networks that surround each
word extend beyond 2-hops, and vary in size. Using the basic
framework described in Chan and Vitevitch (2009) and simulated
in Vitevitch et al. (2011), we consider how the difference in the
size of the network component that the words reside in (lexical
island vs. giant component) might contribute to the results ob-
served in the present set of experiments.

Recall that the giant component represented the largest con-
nected component of the phonological network, whereas lexical
islands constitute smaller, connected components of the phonolog-
ical network. The giant component consisted of 6,508 words
compared with the largest lexical island, which consisted of only
53 words. If we again assume that the target words in the giant
component and in each island receive an initial burst of activation
of 100 arbitrary units, then the diffusion of activation to every
word connected to the target word (either directly or indirectly)
results in each word in the giant component receiving a smaller
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“share” of the initial burst of activation (100/6,508 = 0.015 units
of activation) compared with the “share” of the activation that each
word in even the largest of the lexical islands receives (100/53 =
1.887 units of activation). Using the mapping of activation values
to response latency and accuracy rate as described in Vitevitch et
al. (2011), the relative difference in the activation received by
words in the giant component versus the lexical islands gives the
words in the islands a clear processing advantage (despite being
comparable on other psycholinguistic characteristics).

Even though conventional assumptions from psycholinguistics
and mainstream models of word recognition cannot account for the
results of Experiments 1 and 2, the network framework described
in Chan and Vitevitch (2009, 2010) and simulated with a simple
diffusion mechanism in Vitevitch et al. (2011) does provide an
account. To further examine how activation in the giant component
versus activation in the lexical islands affects retrieval of otherwise
comparable words we used a serial recall task (Experiment 3).
Using a serial recall task offers another way to compare the
processing of giant component and lexical island words, especially
as it has been argued that short-term memory (STM) involves
processes that also occur in speech perception (Ellis, 1980; Schwe-
ickert, 1993) and speech production (Roodenrys, Hulme, Leth-
bridge, Hinton, & Nimmo, 2002). In addition, given that the
dependent variable of interest in the serial recall task is recall
accuracy, the serial recall task may reveal differences in accuracy
rates between giant component and lexical island words that were
not observed in Experiments 1 and 2. Based on the results of
Experiments 1 and 2, we expect that lexical island words will be
recalled more accurately than giant component words.

Experiment 3

In a serial recall task participants are presented with a sequence
of items (e.g., words or numbers) and have to recall those items in
the same order in which they were presented. The serial recall task
is widely used by cognitive psychologists to examine STM and its
underlying cognitive processes (Baddeley, Thomson, & Buchanan,
1975; Ebbinghaus, 1913; Hulme, Maughan, & Brown, 1991).
However, there is evidence that suggests that long-term memory
contributes to serial recall ability as well (Hulme et al., 1997;
Tehan & Humphreys, 1988; Watkins, 1977), making it appropriate
to use this task to further examine (in a complementary manner)
that part of long-term memory known as the mental lexicon (see
Vitevitch et al., 2012).

Method

Participants. Thirty-two native English speakers were re-
cruited from the introductory psychology subject pool. All partic-
ipants had no previous history of speech or hearing disorders and
received partial course credit for their participation. These partic-
ipants did not participate in Experiments 1 and 2.

Materials. The word stimuli for the present experiment con-
sisted of the same 96 words used in Experiment 1. The words in
each condition were pseudorandomly assigned to ensure that no
phonological neighbors appeared in the same list. Eight lists con-
sisting of six giant component words each and eight lists consisting
of six lexical island words each were created. In addition, two
different samples of the 16 lists (Versions A and B) were created
to minimize order effects.

Procedure. Participants were tested individually. Each partic-
ipant was randomly assigned to one of two versions of the word
lists (A or B), with 16 participants being assigned to each version.
As in the previous experiments, each participant was seated in
front of an iMac computer. PsyScope 1.2.2 was used to randomize
and present the stimuli via BeyerDynamic DT100 headphones at a
comfortable listening level.

In each trial, the word READY appeared on the screen for 500
ms. Participants were presented with one of the 16 randomly
selected lists over headphones, at a rate of approximately 1 word
per second. At the end of each list, the prompt RECALL appeared
on the screen and participants recalled out loud the list of words in
the same order as they were presented. Participants were instructed
to say “pass” if they could not recall the word in any particular
position. Verbal responses were recorded for offline scoring of
accuracy. The next trial began when participants finished recalling
the words and pressed the spacebar. Prior to the experimental
trials, each participant received four practice trials to become
familiar with the task; these trials were not included in the subse-
quent analyses. There were a total of 16 trials and the experiment
lasted approximately 15 min.

Results

In contrast to the previous two experiments, recall accuracy was
the dependent variable of interest in this experiment. Accuracy was
manually scored offline by Cynthia S. Q. Siew. Trials which
contained mispronunciations of the word, or in which the partic-
ipant said “pass” (or some indication of recall failure, e.g., “skip”
or “don’t know”) were coded as incorrect trials.

A 2 X 6 two-way within-participants analysis of variance
(ANOVA) was conducted. The independent variables were loca-
tion (2; lexical island or giant component) and serial position (6; 1
through 6). The dependent variable was the mean accuracy rate in
each condition. The Location X Position interaction was signifi-
cant, F(5, 155) = 3.32, p < .01. To ensure that the significant
interaction was not due to specific ordering effects of either
Version A or Version B, list was included as a third independent
variable in the ANOVA. The three-way interaction was not sig-
nificant, indicating that the significant two-way interaction ob-
served between location and position was consistent across both
lists.

To further interpret the nature of the significant Location X
Position interaction, tests of simple main effects of location were
conducted at each level of position. At Position 1, the simple main
effect of location was significant, F(1, 31) = 9.83, p < .01. At
Positions 2 to 6, the simple main effect of location was not
significant (Fs < 1.70, ps > .20).

As shown in Figure 1, recall for words from lexical islands was
significantly better than words from the giant component, but only
for words in the first position of the serial recall curve. Recall for
words from lexical islands or the giant component did not signif-
icantly differ across the other positions along the serial recall
curve.

Discussion

As we predicted, serial recall of lexical island words was more
accurate than recall of giant component words, although this was
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only observed for words in the initial serial position. According to
the memory literature, items presented in early serial positions are
retrieved from long-term memory, whereas items presented in late
serial positions are retrieved from STM (Craik, 1968; Watkins,
1977). Given that an advantage for lexical island words was only
observed in the first serial position (i.e., a primacy effect), this
would suggest that long-term memory plays a role in the superior
serial recall performance of lexical island words in the first serial
position. Given that the mental lexicon is part of long-term mem-
ory, it is perhaps not surprising that effects for where in the lexicon
a word resides (i.e., islands vs. the giant component) were ob-
served in the first position of the serial recall curve.

The advantage in serial recall of lexical island words over giant
component words in the present experiment can again be ac-
counted for with the diffusion of activation account discussed in
the contexts of Experiments 1 and 2. According to this account,
activation eventually diffuses to all of the other words within the
component. For a word in the giant component, which contains
more than 6,000 words, the “share” of activation that each word
has is relatively less than the “share” of activation that each word
has in even the largest lexical island (which contained about 50
words). The relative difference in the amount of activation for each
lexical island word and for each giant component word gives
lexical island words a processing advantage over giant component
words, as observed in the present experiment.

However, the processing advantage for lexical island words over
giant component words is not limited to the experiments reported
here. We also examined the visual naming and visual lexical
decision data from the English Lexicon Project (ELP; Balota et al.,
2007) for evidence of such a processing advantage. The ELP
database contains lexical characteristics (e.g., word frequency,
number of orthographic and phonological neighbors) for more than
40,000 words, as well as behavioral data from 1,260 participants
across six universities who responded to those words in a visual
naming task and a visual lexical decision task. One important point
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Serial recall curve showing proportion of accurate recall of giant component and lexical island words
at each serial position. The error bars represent standard error.

to note is that the behavioral data in the ELP was obtained by
presenting stimuli visually rather than auditorily, as in the present
experiments. It is nonetheless worthwhile to investigate whether
the macro-structure of the phonological network might also influ-
ence visual word processing (especially in light of the results
reported by Yates, 2013).

We analyzed in the ELP database the words used in the present
studies (N.B., cumber, remit, rollick, and scepter were not found in
the ELP database). Although none of the analyses reached statis-
tical significance, the numerical trends observed in the visual
naming and visual lexical decision data from the ELP were in the
same direction as observed in the present studies.

We also attempted to use the ELP database to generalize to a
different set of words (48 new words were selected from lexical
islands such that compared with the original stimuli, equivalent
numbers of lexical island words were obtained from lexical islands
of the same sizes). Again, none of the analyses reached statistical
significance, but the numerical trends observed in the visual nam-
ing and visual lexical decision data from the ELP for the new set
of words were in the same direction as observed in the present
studies. The trends observed in the ELP analyses further suggest
that a processing advantage exists for lexical island words over
giant component words.

More directly related to spoken language processing, Vitevitch
and Castro (2015) analyzed data from individuals with Broca’s
aphasia, with Wernicke’s aphasia, and from age-matched controls
on the Philadelphia Naming Task (Mirman et al., 2010). Their
analysis replicated a number of well-known findings, including
well-studied influences on picture naming of word length, word
frequency, and neighborhood density (Vitevitch, 1997, 2002). Rel-
evant to the present set of experiments, Vitevitch and Castro
found, using a binomial multiple regression model, that words
found outside of the giant component were named about two times
more accurately than words found in the giant component. Al-
though Vitevitch and Castro did not distinguish between words in
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smaller components (i.e., lexical island words) and isolates (i.e.,
hermits) in their analysis (i.e., they simply categorized words as
being inside or outside of the giant component), their results
clearly show the same processing disadvantage for words found in
the giant component that was observed in the present set of
experiments.

The analysis reported in Vitevitch and Castro (2015) is impor-
tant because it provides a systematic replication of the processing
disadvantage for words found in the giant component that was
observed in the present set of experiments. Notably, Vitevitch and
Castro found this effect in several different participant populations,
in a different psycholinguistic task (picture-naming), in a different
set of words (only the word mountain appeared in the present
experiments and in the words in the Philadelphia Naming Test),
and in a different dependent variable (i.e., naming accuracy) in
data that were collected by an independent lab. Such replications
demonstrate the internal and external validity of the present results.

General Discussion

Across three experiments (see also Vitevitch & Castro, 2015), a
processing advantage was observed for lexical island words com-
pared with giant component words. Lexical island words were
produced more quickly in a naming task, recognized more quickly
in a lexicon decision task, and recalled more accurately in a serial
recall task than giant component words. As these two sets of words
were matched on a number of relevant psycholinguistic and net-
work characteristics known to influence lexical processing, the
present findings show that where a word is located in the lexical
network influences lexical retrieval.

Additional analyses of data from the English Lexicon Project
revealed trends that were consistent with the results observed in
the three psycholinguistic experiments reported above. These anal-
yses were conducted for the stimuli used in the present experi-
ments as well as for a different set of carefully matched stimuli. In
both sets of words, lexical island words were responded to more
quickly and accurately than giant component words. It is also
worthwhile to point out that Vitevitch and Castro (2015) analyzed
data from the Philadelphia Naming Test in the Moss Aphasia
Psycholinguistics Project Database and found that individuals
named pictures of words outside of the giant component (i.e.,
lexical island words and hermits) more accurately than pictures of
giant component words. As these analyses explicitly controlled for
various lexical characteristics known to influence the likelihood of
correctly naming a picture, it is difficult for any explanation that
does not consider the overall network structure of the mental
lexicon to account for the findings of Vitevitch and Castro as well
as the results from the present investigation. Taken together, it is
striking to see that analyses of databases containing behavioral
data from a variety of experimental designs and different partici-
pant populations provide converging evidence that lexical island
words possess a lexical retrieval advantage over giant component
words, strongly suggesting that our findings are not spurious
results limited to a particular set of stimuli, nor were they a
by-product of the experimental paradigms employed in the present
study.

There are a number of widely accepted models of spoken word
recognition including the cohort model (Marslen-Wilson, 1987; the
latest adaptation being the distributed cohort model, Gaskell &

Marslen-Wilson, 1997); TRACE, the interactive-activation model
proposed by McClelland and Elman (1986), Shortlist B (Norris &
McQueen, 2008); neighborhood activation model (NAM; Luce &
Pisoni, 1998); and PARSYN, the computational instantiation of NAM
(Luce, Goldinger, Auer, & Vitevitch, 2000). Although these models
have different computational architectures, they have successfully
accounted for several well-established influences of word frequency,
phonological neighborhood density, and phonotactic probability on
spoken word recognition. It is not clear, however, how these well-
known models of spoken word recognition would account for the
present results. Recall that lexical island and giant component words
selected for the present set of experiments were closely matched on a
variety of lexical characteristics that are known to influence spoken
word recognition, so current models of spoken word recognition
would not predict any processing differences between the two sets of
words. In contrast, we observed processing differences depending on
whether words resided within the giant component or within lexical
islands of the phonological network.

The results of the present experiments were also counter to our
initial intuitions. We reasoned that (a) the inverse relationship be-
tween word frequency and word length, such that high frequency
words tend to be short words, and low frequency words tend to be
longer words (Zipf, 1935), and that (b) shorter, more frequently
occurring words tend to be found in the giant component and longer,
less frequently occurring words tend to be found among the lexical
islands and hermits (Siew, 2013) would result in a great deal of lexical
processing occurring within the giant component. We further rea-
soned that the accumulation of indirect activation (e.g., Nelson et al.,
1998) in giant component words compared with lexical island words
would result in more rapid and accurate responses to giant component
words compared with lexical island words. Contrary to our intuition,
we observed instead a processing advantage for lexical island words
over giant component words.

To account for this counterintuitive finding, which cannot be ac-
commodated by widely accepted models of spoken word recognition,
we appealed to the network framework described in Chan and Vite-
vitch (2009) and simulated in Vitevitch et al. (2011). The diffusion of
activation framework assumes that total activation remains constant
over time (i.e., activation does not “‘decay”” over time) and that higher
activation levels are associated with faster retrieval times and more
accurate retrieval (see Vitevitch et al., 2011 for more detailed descrip-
tions of these assumptions). In this framework, a word-form (or node)
was partially activated by the acoustic-phonetic input. Activation at
that node would diffuse to other nodes connected to that target node,
with activation continuing to diffuse to other connected nodes (in-
cluding diffusing back to the target item). The more activation that
accumulates in a node, the faster and more accurate a response would
be for the word represented by that node.

In the present case, the giant component contained more than 6,000
words, and the largest lexical island contained about 50 words. If we
again assume that the target words in each case receive an initial burst
of activation of 100 arbitrary units, then the diffusion of activation to
every word connected to the target word (either directly or indirectly)
results in each word in the giant component receiving a smaller
“share” of the initial burst of activation compared with the ““share” of
the activation that each word in even the largest of the lexical islands
receives. The relative difference in the activation received by words in
the giant component versus the lexical islands gives the words in the
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islands a clear processing advantage (despite being comparable on
other psycholinguistic characteristics).

The diffusion of activation across the network described in Chan
and Vitevitch (2009) and simulated in Vitevitch et al. (2011) predicts
gradient effects based on the size of the component. In practice,
however, we expect the effects to appear more categorical in nature.
‘We make what may appear to be contradictory predictions because of
the distribution of component size in the lexical network. Consider
that the giant component of English contains ~6,000 words (Vite-
vitch, 2008), and the next largest component (i.e., the largest lexical
island) contains ~50 words; this is a difference of 2 orders of
magnitude. The next largest component (i.e., the second largest lexical
island) contains ~10 words. Arbesman et al. (2010a) examined a
larger database of English words, but again found a difference in size
between the giant component and lexical islands that was of several
orders of magnitude, as shown in Figure 2 of that report. Given the
small differences in size found among the lexical islands, and the very
large difference in size when comparing the giant component to the
lexical islands, any gradient effects that may exist may not be easily
detected with conventional statistical methods, and may instead ap-
pear to be categorical in nature.

An alternative framework that may also account for the present
findings comes from a memory retrieval model, which considers the
discriminability of a particular item in the context of its neighbors
within a psychological space (we thank an anonymous reviewer for
suggesting this alternative approach). Brown, Neath, and Chater
(2007) proposed the Scale-Independent Memory, Perception, and
LEarning (SIMPLE) model to account for various memory phenom-
ena, one of which—isolation (or distinctiveness) effects—may be of
particular relevance to our present discussion. According to the SIM-
PLE model, successful memory retrieval occurs when an item is
particularly distinctive and discriminable compared with its nearby
neighbors on various dimensions. The temporal isolation effect—the
finding whereby an item in the middle of a list that is preceded and
followed by an exceptionally long pause during presentation is better
recalled—is one example of an isolation effect. Generally, items that
are more distinguishable on a temporal dimension are more accurately
remembered because they are temporally distinctive—being “further”
away from their competitors on a temporal dimension (Brown, Morin,
& Lewandowsky, 2006).

By analogy, one could replace the temporal dimension in the
SIMPLE model (Brown et al., 2006) with a spatial dimension
representing phonological similarity-space. Previous studies dem-
onstrate that the speed and accuracy of lexical retrieval depends on
the ease of discriminating a target word from its neighbors in a
phonological similarity-space. The neighborhood density effect is
one example—words with several phonological neighbors are re-
sponded to more slowly than words with few phonological neigh-
bors (Luce & Pisoni, 1998).

Our present finding—that lexical island words were responded to
more quickly and accurately than giant component words—could be
an example of the “isolation effect” described in the SIMPLE model
(Brown et al., 2006). Both giant component and lexical island words
were matched on neighborhood density/degree and clustering coeffi-
cients, so the average distance between giant component and lexical
island words and their local neighbors are equivalent. Given that
lexical islands are smaller connected components that do not connect
to other network components, lexical island words are free of distant
neighbors, which allow words in the lexical islands to “stand out” to

a greater extent in these sparsely populated regions of phonological
similarity-space. On the other hand, giant component words are con-
nected to many distant neighbors, reducing the discriminability of the
target word, making it difficult for the giant component word to
“stand out” and to be easily retrieved. Therefore, lexical island words
may be more efficiently responded to than giant component words
due to greater “phonological distinctiveness” from the rest of the
lexicon. Our results suggest that in addition to nearby neighbors it is
just as important to consider the influence of distant neighbors on the
discriminability of the target word. The network science approach
offers one way to quantify and study the influence of these distant
neighbors on lexical processing by considering the overall structure of
the phonological network.

Recent studies (e.g., Chan & Vitevitch, 2009, 2010; Vitevitch et
al., 2012, 2014) as well as the present work show that applying the
network science approach in psycholinguistics can lead to a more
nuanced understanding of the processes and representations in-
volved in spoken word recognition. It is important to note that the
network science approach emphasizes how the structure (at vari-
ous levels) of the network can influence processing in that system
(Strogatz, 2001). Without explicitly appealing to the overall struc-
ture of the lexicon, it is difficult to see how current models of
spoken word recognition would account for these findings.

The present finding—lexical island words have a processing ad-
vantage over giant component words—suggests that smaller con-
nected components in the lexical network may play an important
compensatory role in lexical retrieval, enabling words that, due to
certain lexical characteristics, should be “at risk™ for slow, laborious,
and errorful retrieval to be retrieved with relative ease and efficiency.
Not being connected to the giant component may limit, impair, or
otherwise challenge certain processes found in other domains exam-
ined by network science, leading to a disadvantage for items in the
smaller components. However, in the case of the mental lexicon,
being “exiled” to a lexical island may be accompanied by certain
advantages (e.g., fewer nodes to “share” activation with, a shorter
network diameter, greater distinctiveness from the rest of the lexicon),
resulting in a trade-off of sorts that makes for rapid and efficient
language processing overall. That is, what appears to be an ineffective
structure—a small “giant” component, and many lexical islands and
hermits—may, in fact, contribute to an efficient process overall.

The peculiar structure of the lexical network might also enable the
language system to maintain connectivity and resist succumbing to
damage (i.e., it is robust), yet remain flexible enough to continue to
evolve over time. In network science, the robustness of a network
refers to the ability of a network to continue to function (as measured
by changes in the average path length of the network which assesses
the overall connectivity of the network) despite the removal of nodes
from the network (Albert & Barabdsi, 2002). Highly connected nodes
can be targeted for removal, or nodes can be removed via random
selection. Typically a targeted attack on a network results in a large
increase in the average path length—one needs several more steps in
order to traverse the network, indicating that the functioning of the
network is compromised (Albert & Barabasi, 2002). It is interesting to
note that Arbesman et al. (2010b) found that the phonological net-
work was extremely resistant to both random and targeted attacks. As
the vast majority of complex networks typically have a very large
proportion of nodes residing in their giant components (Newman,
2001), this extraordinarily high amount of robustness of the phono-
logical network could be due to the unique structure of the mental
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lexicon—a small “giant” component, and many lexical islands and
hermits.

Evolvability refers to the ability of the network to adapt over time
(Payne & Wagner, 2014). Language is widely regarded as a highly
evolvable system (Ke, Minett, Au, & Wang, 2002; Nowak &
Krakauer, 1999; Solé, Corominas-Murtra, Valverde, & Steels, 2010).
The unique structure of the phonological network might also contrib-
ute to the evolvability of language. For instance, new words may
connect to words in the lexical islands or to hermits instead of to
words in the giant component. Such a situation would help maintain
stability in the overall function of the phonological network by keep-
ing constant the structure and size of the giant component (where
most lexical processing presumably occurs), while at the same time
promoting growth in the mental lexicon by incorporating novel com-
binations of speech sounds (i.e., new words) into the smaller compo-
nents of the phonological network without drastically influencing the
overall functioning of the language network.

Although some researchers have noted a trade-off between robust-
ness and evolvability of complex networks (Ciliberti, Martin, &
Wagner, 2007), the phonological network may represent an exception
to this general observation. In particular, the structure of the phono-
logical network—a “small” giant component (in comparison with
other real-world networks) and the presence of several smaller con-
nected components and isolates—may afford the phonological net-
work the best of both worlds: the ability to withstand random and
targeted removal of nodes from the network (robustness), and the
ability to adapt to environmental and sociocultural changes (evolv-
ability).

The results of these experiments have shown that where in the
network a word is located (the giant component vs. a lexical island)
plays an important role in spoken word recognition and memory
processes, over and beyond the lexical and network characteristics of
individual words. It is important to note that the present work has
shown that, in addition to the structure at the micro- and meso-levels
of the phonological network, the macro-level structure of the phono-
logical network has important implications for spoken word recogni-
tion processes, contributing to the growing body of research showing
that the structure of the mental lexicon has measurable influences on
cognitive processes (e.g., De Deyne, Navarro, Perfors, & Storms,
2012; Hills, Maouene, Maouene, Sheya, & Smith, 2009).
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Appendix A

List of Lexical Island and Giant Component Words and Mean Reaction Times (RT; in milliseconds) for
Experiments 1 and 2

Mean RT
(Exp 2: Lexical decision)

Lexical island words

Mean RT
Word (Exp 1: Naming)
beckon 900
mission 885
portion 950
taken 869
concede 1,035
concern 1,062
confine 996
consign 1,045
coffin 954
deafen 916
siphon 1,027
soften 1,065
banish 955
furnish 1,059
manage 939
marriage 932
domain 926
regain 910
remain 963
retain 968
partition 987
permission 932
petition 958
position 1,021
central 1,009
locus 930
notice 914
report 926
lizard 918
nervous 944
service 1,059
warrant 922
happen 908
margin 914
peasant 883
revolve 902
gallop 871

1,068
811
1,056
886
1,080
1,033
923
1,206
900
1,060
1,053
961
955
1,063
983
917
988
941
1,004
970
993
991
928
979
1,064
988
915
1,011
933
930
1,062
1,045
1,007
934
842
948
869

(Appendix continues)
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Appendix A (continued)

SIEW AND VITEVITCH

Mean RT Mean RT
Word (Exp 1: Naming) (Exp 2: Lexical decision)
nominee 1,013 1,097
felon 994 921
village 982 948
cunning 956 930
retail 935 968
memory 886 924
trophy 937 877
treasure 908 875
solemn 1,017 1,151
radio 907 850
plaza 981 1,111
Giant component words
parcel 962 1,027
ceiling 1,014 1,116
driven 865 908
temple 886 886
comic 923 994
century 1,005 1,018
panther 971 990
facet 975 1,234
cumber 916 1,033
stutter 1,019 940
rollick 973 1,417
scepter 1062 1,152
brittle 821 855
filing 1,049 1,119
scant 1,100 1,175
mountain 933 938
spiral 1,095 1,108
drench 976 1,072
repeat 884 874
grunt 897 883
coroner 1,034 1,146
remind 922 1,077
defend 955 989
mention 961 901
receive 989 1,021
limber 949 1,096
hardly 975 1,089
minute 907 935
squid 1,154 1,043
straighten 1,119 1,059
supposed 1,126 1,087
collect 932 956
mustard 956 949
cartridge 933 914
languor 984 1,058
dribble 908 928
magnet 979 1,072
parable 943 1,063
remit 953 1,199
reverse 864 954
knowledge 941 975
device 920 895
chapter 945 947
hamper 936 892
temporal 950 1,020
colleague 980 1,048
danger 874 800
salvage 1,037 1,066
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Nonwords Used in Experiment 2
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Nonword IPA Nonword IPA
beton betin porcel pousl
mizzion mi3in ceilong silop
pontion ponfin druven diuvon
tapen tepin tample timpl
conzede konzid cowic kawik
conbern konbz:n cendury sendai
comfine komfain panker panko
conlign kanlam fapet faesot
cothin koBon cumler kamlor
deamen demon stoitter StoIt
suphon sufon romick Jamik
saften sAfon sepger SEPEI
bonish bonif brimmle barml
fugish fzglf fileg failen
magage meagid3 scaft skeaft
madiage madid3 moontain mountn
dogain dogen spooral spual
reshain afen drenth dientf
redain aiden repout Jipaot
refain Jifen glunt glant
partution patufin corofer koradar
pernission panifin rehind Jthaind
perition padifin dejend dojend
polition palifin mendion mendin
cendral sendil rebeive a1biv
lercus 13kis lomber lombar
nopice nopis harply haapli
rekort atkout minupe minot
lipard lipaed sqad spwid
navous nAvas stroten stiotn
sernice $3N3s summosed somozd
weerant wiIant colluct kalukt
halen haelon musgard masga«d
mardin madidin curtridge kuatdz
peasart pezit langdor lepdar
repolve Jipalv driggle daigl
goillop go1lop magzet meegzit
nomidee namadi paradle paiadl
fenon fenin remut JImat
vittage vitid3 relerse al3s
cuzzing ka3zip knowpedge napid3
rezail Jizel degice dogais
medory medai chapmer tfepma
tromy tromi hamler hamlo
trosure t1032+ temtoral temtal
somemn samom comeague kamig
ravio Jevio dadger deddzo-
plara plerd salgage selgid3

Note. IPA = International Phonetic Alphabet.
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