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Orthographic effects in spoken word recognition and phonological effects in visual word recognition
have been observed in a variety of experimental tasks, strongly suggesting that a close interrelationship
exists between phonology and orthography. However, the metrics used to investigate these effects, such
as consistency and neighborhood size, fail to generalize to words of various lengths or syllable structures,
and do not take into account the more global similarity structure that exists between phonological and
orthographic representations in the language. To address these limitations, the tools of Network Science
were used to simultaneously characterize the phonological as well as orthographic similarity structure of
words in English. In the phonographic network of language, links are placed between words that are both
phonologically and orthographically similar to each other (e.g., words such as pant (/pænt/) and punt
(/p�nt/)). Conventional psycholinguistic experiments (auditory naming and auditory lexical decision) and
an archival analysis of the English Lexicon Project (visual naming and visual lexical decision) were
conducted to investigate the influence of 2 network science metrics derived from the phonographic
network—phonographic degree and phonographic clustering coefficient—on spoken and visual word
recognition. Results indicated a facilitatory effect of phonographic degree on visual word recognition,
and a facilitatory effect of phonographic clustering coefficient on spoken word recognition. Implications
of the present findings for theoretical models of spoken and visual word recognition are discussed.

Keywords: network science, phonographic language network, spoken word recognition, visual word
recognition, clustering coefficient

Consider the following from T. S. Watt’s (1954) poem titled
“Brush up your English:”

Beware of heard, a dreadful word

that looks like beard and sounds like bird,

and dead—it’s said like bed, not bead.

For goodness’s sake, do not call it deed!”

The rest of the poem continues to warn the reader to be wary of
“dreadful” English words that are not pronounced as one might
expect from its spelling and not spelled in ways as one might
expect from its pronunciation. Clearly, an interesting and complex
interrelationship exists between the phonology and orthography of
English. Years of psycholinguistic research in both visual and
spoken word recognition have further demonstrated that this in-
terrelationship influences word recognition—orthographic influ-
ences on spoken word recognition and phonological influences on
visual word recognition have been observed in a variety of exper-
imental tasks (Seidenberg & Tanenhaus, 1979; van Orden, 1987;
Yates, Locker, & Simpson, 2004; Ziegler, Muneaux, & Grainger,
2003).

An overview of prior work investigating orthographic effects
in spoken word recognition and phonological effects in visual
word recognition is first provided. We argue that prior work
ultimately fails to (a) generalize to words of various lengths or
syllable structures and (b) take into account the more global
similarity structure that exists between phonological and ortho-
graphic representations in the language. To address the limita-
tions of prior work, we propose an alternative approach that
uses the tools of network science to characterize, simultane-
ously, the phonological as well as orthographic similarity struc-
ture of words (of all lengths) in the language.
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Phonological Effects in Visual Word Recognition

Language researchers have long noted the close interrelation-
ship between spoken language and its writing system (e.g., Liber-
man, 1992). Indeed, several years of research have showed that
phonology plays an important role in reading, as demonstrated by
the influence of various phonological effects on visual word rec-
ognition. For instance, the homophone effect refers to the finding
that homophones, words that have different spellings and mean-
ings but sound identical (e.g., “rose”/“rows” and “boar”/”bore”),
are more slowly processed in the presence of homophone foils
(Ferrand & Grainger, 2003; Grainger & Ferrand, 1994; van Orden,
1987). Another robust finding is the feedforward consistency ef-
fect, where words containing bodies with inconsistent pronuncia-
tions (e.g., the body “-ave” is pronounced /-æv/ as in “have” and
/-eIv/ as in “wave”) are more slowly processed in a number of
visual word recognition tasks (Cortese & Simpson, 2000; Jared,
1997; Jared, McRae, & Seidenberg, 1990; Stone, Vanhoy, & van
Orden, 1997; Ziegler, Montant, & Jacobs, 1997). Recent work has
also found that the number of phonological neighbors influences
visual word processing tasks, such that the processing of words
with many phonological neighbors is facilitated as compared to
words with few phonological neighbors (Grainger, Muneaux, Fa-
rioli, & Ziegler, 2005; Yates, 2005; Yates et al., 2004).

Orthographic Effects in Spoken Word Recognition

Seidenberg and Tanenhaus’s (1979) paper was one of the first to
show that orthography influences the processing of spoken words.
Using a rhyme detection task, Seidenberg and Tanenhaus showed
that the time taken to decide if two words rhymed was influenced
by their orthographic similarity. Participants took a longer time to
decide that “tie” and “rye” (orthographically dissimilar pair)
rhymed as compared to “tie” and “pie” (orthographically similar
pair). Subsequently, several studies have also found orthographic
effects in a variety of online tasks such as naming (Ziegler,
Ferrand, & Montant, 2004; Ziegler et al., 2003) and auditory
lexical decision (Dich, 2011; Roux & Bonin, 2013; Ziegler &
Ferrand, 1998; Ziegler et al., 2003, 2004).

One of the most robust orthographic effects found in the studies
cited above is the feedback consistency effect, which refers to the
finding that words containing sound-to-spelling inconsistencies
(e.g., the rime /ip/ can be spelled as “-eep” as in “deep” or “-eap”
as in “heap”) are more slowly and less accurately responded to in
lexical decision and word naming tasks (Ziegler & Ferrand, 1998;
Ziegler et al., 2003, 2004). The size of the orthographic neighbor-
hood also influences spoken language processing. Various studies

have shown that when phonological neighborhood size is con-
trolled for, the size of the orthographic neighborhood facilitates
spoken word recognition—words with many orthographic neigh-
bors are produced and recognized more quickly and accurately
than words with few orthographic neighbors (Muneaux & Ziegler,
2004; Ziegler et al., 2003).

To recapitulate, effects of phonological variables have been
observed in visual word recognition tasks and effects of ortho-
graphic variables have been observed in spoken word recognition
tasks, pointing to the presence of a close interrelationship between
phonology and orthography in language processing (see Table 1
for a summary of the previous literature). Importantly, these find-
ings raise key questions about the nature of lexical representations
that are stored within long-term memory and the cognitive pro-
cesses that support lexical retrieval.

Limitations of Current Approaches

Metrics such as consistency and neighborhood size represent
different ways of capturing the relationship between orthography
and phonology in a language—neighborhood size is calculated
based on evaluating the orthographic or phonological similarity of
a target word to other words in the lexicon (Coltheart, Davelaar,
Jonasson, & Besner, 1977; Luce & Pisoni, 1998), and consistency
is determined by calculating how often the body of the target word
is pronounced or spelled among words that also share the same
body or rime (Kessler & Treiman, 1997). Nevertheless, these
metrics do not capture the overall relationship between orthogra-
phy and phonology in a language because the way in which these
metrics have been operationalized restricts their applicability to a
subset of words within the entire mental lexicon. That is, consis-
tency measures are limited to words with a vowel-consonant
structure. Phonological or orthographic neighborhood measures
capture only one particular aspect of similarity in the language
rather than the interrelationship between phonology and orthogra-
phy. To make continued progress in our understanding of phono-
logical and orthographic influences on language processing we
argue that an alternative theoretical approach is required, one that
explicitly considers how cognitive processes operate in a complex
network that represents the interrelationships among orthographic
and phonological information in words.

Consider the asymmetric nature of phonological neighborhood
and orthographic neighborhood effects in visual and auditory
tasks. Ziegler et al. (2003) found an inhibitory phonological neigh-
borhood effect in spoken word recognition tasks, whereas Yates et
al. (2004, 2005; also Grainger et al., 2005) found a facilitatory
phonological neighborhood effect in visual word recognition tasks.

Table 1
Summary of Phonological Effects in Visual Word Recognition and Orthographic Effects in Spoken Word Recognition

Phonological effects in visual word recognition Orthographic effects in spoken word recognition

• Homophone effect (Ferrand & Grainger, 2003; Grainger & Ferrand, 1994;
Van Orden, 1987)

• Feedback consistency effect (Ziegler & Ferrand, 1998;
Ziegler, Ferrand, & Montant, 2003, 2004)

• Feedforward consistency effect (Cortese & Simpson, 2000; Jared, 1997;
Jared, McRae, & Seidenberg, 1990; Stone, Vanhoy, & Van Orden, 1997;
Ziegler, Montant, & Jacobs, 1997)

• Orthographic neighborhood size (Muneaux & Ziegler, 2004;
Ziegler, Muneaux, & Grainger, 2003)

• Phonological neighborhood size (Grainger, Muneaux, Farioli, & Ziegler,
2005; Yates, 2005; Yates, Locker, & Simpson, 2004)
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On the other hand, orthographic neighborhood effects appear to be
facilitatory in both visual and spoken word recognition tasks
(Ziegler et al., 2003). These findings hint at differences in the way
that phonological and orthographic information influence lexical
processing in different modalities. However, to date, it is not clear
why the effects of similarity on lexical processing differ across
different modalities. Furthermore, there has been little attempt to
account for and integrate these findings within a single model or
framework that considers both the overall phonological and ortho-
graphic structure of language.

To address these limitations we make use of the tools of network
science to simultaneously represent the overall phonological and
orthographic similarity structure of English words. We first pro-
vide a brief introduction to the field of network science and show
how network science has contributed to our understanding of the
cognitive and language sciences.

Introduction to Network Science

Network science is an emerging interdisciplinary field that uses
mathematical techniques to characterize and analyze the structure
of complex networks in various domains (Barabási, 2009; Watts,
2004). Examples of complex networks include friendship networks
on social media websites (Lewis, Kaufman, Gonzalez, Wimmer, &
Christakis, 2008), air transportation networks (Cardillo et al.,
2013), and the mental lexicon (Steyvers & Tenenbaum, 2005;
Vitevitch, 2008).

Networks consist of nodes that are connected to each other via
links. For instance, nodes can represent individuals in a social
network, or airports in an air transportation network. The links that
connect individual nodes in networks represent relationships that
exist between pairs of nodes. In a social network, a link could be
placed between individuals who are friends with each other on a
social media website such as Facebook. In an air transportation
network, links represent the presence of flights between airports.

Network scientists recognize that the processes that occur within
these networks are affected by the structure of the network (Stro-
gatz, 2001). For instance, the structure of the social network affects
the way in which information spreads among people, and the
structure of air transportation networks affects the way air travel is
rerouted when there are major airport closures. In addition to
offering researchers a theoretical framework to study complex
networks, network science provides a comprehensive suite of
methodological techniques to derive a variety of network measures
that describe structure at various levels of the network. These
include metrics that describe the network’s global or macrolevel
structure (e.g., average path length, average clustering coefficient,
overall degree distribution), the local or microlevel structure (e.g.,
degree, clustering coefficient of individual nodes), as well as the
mesolevel structure (i.e., the level that falls between the macro-
and microlevels; e.g., community structure).

The tools of network science have been used to study the
structure of the mental lexicon, which consists of all the words
that a person knows that are stored in long-term memory.
Language researchers have used these tools to model phono-
logical (Vitevitch, 2008), orthographic (Kello & Beltz, 2009),
and semantic (Hills, Maouene, Maouene, Sheya, & Smith,
2009; Solé, Corominas-Murtra, Valverde, & Steels, 2010;
Steyvers & Tenenbaum, 2005) networks of words in the mental

lexicon. In these networks, each node represents a word, but the
ways in which links connect the nodes differ (i.e., based on
phonological, orthographic or semantic relationships among
words).

Phonological Language Network

The phonological network examined in Vitevitch (2008) con-
sisted of the phonological transcriptions of 19,340 words obtained
from the 1964 Merriam-Webster Pocket Dictionary. The words in
the Merriam-Webster Pocket Dictionary were used to represent the
mental lexicon of an average native adult speaker of English.
Although it must be noted that individual differences do exist with
respect to the size and internal contents of one’s mental lexicon,
computational analyses of corpora reveal that there exists an
overall kernel lexicon of words common to all speakers of a
particular language (Ferrer-i-Cancho & Sole, 2001). Hence, the
words in the phonological network could be said to be an approx-
imation of the kernel lexicon of the English language. In this
network, nodes represented phonological word forms and links
represented phonological similarity between words. Two words
were considered phonologically similar if the first word could be
transformed to the other by either substituting, adding, or deleting
one phoneme in any position (Landauer & Streeter, 1973; Luce &
Pisoni, 1998). For instance, the word /kæt/ (“cat”) would be
connected to /æt/ (“at”), /bæt/ (“bat”), and /skæt/ (“scat”).

Prior work by Vitevitch and colleagues demonstrated that var-
ious aspects of the structure of the phonological network influ-
ences spoken word recognition (Siew & Vitevitch, 2016) and
production (Chan & Vitevitch, 2010), word learning (Vitevitch &
Goldstein, 2014), and short- and long-term memory processes
(Vitevitch, Chan, & Roodenrys, 2012). At the local or microlevel
of the phonological network, the clustering coefficient, C, of a
word, which represents the extent to which the phonological neigh-
bors of a word are also phonological neighbors of each other, had
measurable effects on a variety of psycholinguistic tasks such as
perceptual identification, lexical decision, and picture naming
(Chan & Vitevitch, 2009, 2010; Vitevitch et al., 2012; Vitevitch &
Goldstein, 2014).

At the macrolevel of analysis, Vitevitch and Goldstein (2014)
found a processing advantage for “keywords”—a set of words that,
when removed, would cause the network to fracture into several
smaller components—as compared to nonkeywords with compa-
rable lexical characteristics. Another measure of the macrolevel
structure of the network is assortative mixing by degree, which
refers to the tendency for highly connected nodes to be connected
to other highly connected nodes in the network (Newman, 2002).
Vitevitch, Chan, and Goldstein (2014) analyzed instances of failed
lexical retrieval by participants and found that the errors reflected
the presence of high assortative mixing by degree in the phono-
logical network. Another study of the macrostructure of the pho-
nological network (Siew & Vitevitch, 2016) showed that words
from lexical islands (small groups of words connected to each
other but not to the rest of the network) were recognized more
quickly than words from the giant component (the part of the
network where most of the words are found).

Together, these findings suggest that, in addition to the mi-
crolevel (as exemplified by the clustering coefficient network
metric), the macrolevel structure of the phonological network also
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has important implications for understanding lexical processes.
These findings also show that language researchers can investigate
language in new ways and provide novel insights into the psycho-
logical mechanisms that support lexical processing by using the
tools of network science.

Orthographic Language Network

In contrast to the work done with phonology, there has not been
as much research using the tools of network science to study
orthographic relationships among words. One exception is the
analysis conducted by Kello and Beltz (2009), who constructed an
orthographic word form network whereby links were placed be-
tween words that were substrings of other words. For instance, the
word “air” would be connected to the words “fair” and “aired”.
However, Kello and Beltz’s operationalization of orthographic
similarity (i.e., placing links between words that were substrings of
other words) differs significantly from the way orthographic sim-
ilarity has been typically operationalized in the psycholinguistic
literature, where words are considered to be orthographically sim-
ilar if they differ by the substitution of a single letter (Coltheart et
al., 1977).

It is also important to note that Kello and Beltz (2009) merely
conducted a computational analysis of the orthographic network.
To date, there has not been any behavioral or experimental work
investigating how the network structure of the orthographic lexi-
con might influence lexical processing (but see Siew, 2018).
However, research by Iyengar, Veni Madhavan, Zweig, and Nat-
arajan (2012) suggests that the orthographic structure of language
could have key implications for navigating the mental lexicon.
Participants played a word-morph game where they had to find a
sequence of words such that the first word could be transformed to
the second word (of the same length) by changing a single letter.
For example, the sequence of words to get from “try” to “pot” was
“try-toy-ton-tot-pot”.

Iyengar et al. (2012) found that participants were much faster at
the game when they learned to make use of “landmark” words to
find the sequence of words. That is, participants would repeatedly
morph the start words to the landmark word, then morph to the end
word. Iyengar et al. further examined these landmark words and
found that these words had high closeness centrality—a network
science measure indicating the inverse of the sum of distances of
a node to all other nodes in the network (Borgatti, 2005). High
closeness centrality words were close to many other words in the
network, making them easy targets to morph words into and then
to another word. Iyengar et al.’s findings suggest that the network
structure of orthographic word-forms (albeit one that contained
only three-letter words) has behavioral consequences as one nav-
igates the mental lexicon. Although the word-morph game is an
offline task, the results of the study by Iyengar et al. suggests that
there could be similar implications for lexical retrieval.

Introduction to Multiplex Networks

Words can be phonologically, orthographically, and semanti-
cally related to each other. To date, language networks have been
constructed based on a single type of relationship among words
and analyzed independently of other types of language networks,
thereby failing to capture the multiplexity inherent in language. To

better capture the phonological and orthographic relationships that
exist among words it might be better to use something called a
multiplex network.

A multiplex network (also known as a multilayer network or
simply a multiplex) consists of multiple layers of networks,
whereby the links within each layer represent a different type of
relationship among a common set of nodes (Battiston, Nicosia, &
Latora, 2014). Figure 1 shows a simple multiplex. One example of
a multiplex in the real world is the different kinds of relationships
such as platonic, romantic, or sexual relationships that exist be-
tween people (Lewis et al., 2008). Constructing a social network
based on a single type of relationship is merely a crude approxi-
mation to reality. Because multiplexity is an inherent feature of
most real-world systems it is important to examine multiplex
networks in areas of research such as language processing.

Introducing the Phonographic Network of Language

A phonographic multiplex was constructed with phonological
and orthographic layers. The phonological layer was identical to
the phonological network constructed by Vitevitch (2008). The
orthographic layer consisted of the same words (nodes) in the
phonological network, but the links in this layer are based on
orthographic similarity. Words were connected to each other if
they differed by the substitution, addition, or deletion of a single
phoneme in any word position in the phonological network or a
single letter in any word position in the orthographic network.

Figure 1. A two-layer multiplex. The same nodes are represented in both
layers, and the links within each layer represent a different type of rela-
tionship among nodes (Battiston et al., 2014).
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These definitions of phonological and orthographic similarity
among words have a long history in the field of psycholinguistics
(e.g., Coltheart et al., 1977; Greenberg & Jenkins, 1964).

In the phonographic multiplex, words can be (a) phonologically
and orthographically related to each other, (b) only phonologically
related to each other, (c) only orthographically related to each
other, or (d) neither phonologically nor orthographically related to
each other. Examining the overlapping areas of the phonological
and orthographic layers in the phonographic multiplex (i.e., (a)
words that are phonologically and orthographically related to each
other) could be particularly relevant for studying the interaction of
phonology and orthography in various language processes. There-
fore, in this article we focus on the part of the phonographic
multiplex where the phonological and orthographic links overlap,
that is, the section consisting of links that are found in both
phonological and orthographic layers of the multiplex. This section
of the phonographic multiplex is hence known as the phono-
graphic network (named after the phonological and orthographic
layers of the multiplex).

The phonographic network consisted of 5,896 nodes and 11,702
links. The largest connected component of the phonographic net-
work, also known as the giant component, consisted of 3,292
nodes (approximately 55.8% of the entire phonographic network)
and 9,583 links. The remainder of the phonographic network
consisted of several (�800) lexical islands, smaller connected
components of the network that are not connected to the giant
component. Note that not all words (�70%) from the original set
of 19,340 words (from Vitevitch, 2008) were represented in the
phonographic network. The words that were not represented are
essentially hermits in the phonographic network, because they
were not phonologically and orthographically similar to any
words.

Below, the results of a computational analysis of the macro- and
mesolevel structure of the largest connected component (LCC) of
the phonographic network are briefly reported. Note that only the
largest connected component of the network was analyzed, in line
with the network science literature, as meaningful network mea-
sures cannot be computed if disconnected nodes were included
(Newman, 2006; Watts & Strogatz, 1998). To provide a baseline
for making comparisons of the structure of the phonographic
network, a similarly sized random network was constructed by
randomly placing links between nodes (Erdös & Rényi, 1960).

Macrostructure of the Phonographic Network

Small world structure. The average path length of the LCC
of the phonographic network was 7.14. On average, approximately
seven links had to be traversed to connect any two nodes in the
network. The average path length of the random network was 4.79.
Although the average path length of the phonographic network
was somewhat larger than that of a comparably sized random
network, the conventions used in network science would consider
these values comparable (Watts & Strogatz, 1998).

The average clustering coefficient of the LCC of the phono-
graphic network was 0.284. The average clustering coefficient of
the random network was 0.002. The average clustering coefficient
of the phonographic network was much larger by several orders of
magnitude than that of a comparably sized random network, indi-
cating that the neighbors of a given node in the phonographic

network are more likely to be neighbors of each other, as compared
to the neighbors of a given node in the random network.

According to Watts and Strogatz (1998), a small-world network
has (a) an average path length comparable to the average path
length of a random network, but (b) an average clustering coeffi-
cient much larger than the average clustering coefficient of a
random network with the same number of nodes and edges. Sev-
eral real world networks, such as the network of scientific collab-
orations (Newman, 2004a) and the human brain (Bullmore &
Sporns, 2009), possess these two characteristics and are said to
have a small-world structure. The above results suggest that,
similar to the phonological (Vitevitch, 2008) and semantic
(Steyvers & Tenenbaum, 2005) networks of language, the phono-
graphic network has the features of a small-world network.

Degree distribution. A power law degree distribution is a
common feature of several real-world networks (Albert &
Barabási, 2002). Therefore, analyzing the degree distribution of a
network can reveal additional information regarding the overall
structure of the network. Degree distribution refers to the propor-
tion of nodes that have a given number of links (i.e., degree). If a
degree distribution resembles a normal distribution, most nodes
have the average number of links per node. If a degree distribution
resembles a power law, many nodes have few links (low degree)
and a few nodes have many links (high degree). To be consistent
with prior theoretical analyses, the degree distribution of words
found in the largest component of the phonographic network,
rather than of the entire network, was analyzed.

Various distributions (power law, log-normal, exponential)
were fit to the degree distribution of the giant component of the
phonographic network. The results indicate that the degree
distribution of the giant component of the phonographic net-
work was best fit by a log-normal distribution (Kolmogorov–
Smirnov statistic � 0.0129, p � .78), and not by a power law
(Kolmogorov–Smirnov statistic � 0.0677, p � .001) or expo-
nential distribution (Kolmogorov–Smirnov statistic � 0.0281,
p � .001). Note that nonsignificant p values indicate that the
degree distribution did not significantly differ from the fitted
distribution, whereas significant p values indicate that the de-
gree distribution significantly differed from the fitted distribu-
tion.

The degree distributions of phonological networks of different
languages (e.g., English, Spanish, Basque; see Arbesman, Stro-
gatz, & Vitevitch, 2010) resembled a truncated power law whereas
the degree distribution of the semantic network resembled a power
law (Steyvers & Tenenbaum, 2005). In comparison, the degree
distribution of the phonographic network was best fit by a log-
normal distribution (which indicates that the logarithm of the
variable of interest, degree, is normally distributed). Both log-
normal and power law distributions are examples of heavy- or
fat-tailed distributions, where higher probabilities of extreme val-
ues tend to occur (i.e., nodes with very high degree) as compared
to a normal distribution.

Mesostructure of the Phonographic Network

In addition to delineating the overall topology of a network (i.e.,
the macrolevel), the tools of network science also permit us to
investigate the mesolevel of a network that is typically exemplified
by a network’s community structure. Community structure refers
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to the presence of several smaller groups of nodes within a larger
network, where smaller groups form such that there are many links
among nodes within a group, but fewer links exist between nodes
belonging to different groups (Newman & Girvan, 2004). Com-
munities have been commonly observed in real-world networks
such as the structure of the human brain (Wu et al., 2011), the
World Wide Web (Newman, 2004b), as well as the phonological
network of language (Siew, 2013).

A preliminary community detection analysis was conducted on
the giant component of the phonographic network and on the
random network. Modularity, Q, is a measure of the density of
links within communities as compared to the density of links
between communities (Newman, 2006). Positive Q values that are
close to the maximum value of 1.0 indicate the presence of high
quality communities, where the density of links within communi-
ties is high relative to the density of links between communities
(Fortunato, 2010). Using the Louvain community detection algo-
rithm, 28 communities with Q � 0.820 were detected in the
phonographic network. The large positive modularity value im-
plies the presence of robust community structure in the phono-
graphic network—which was also observed in the phonological
language network (Siew, 2013). In comparison, 38 communities
with a much lower Q of 0.377 were detected in the random
network.

Overall, the above analysis of the phonographic network at the
macro- and meso-levels reveal that several features of its overall
structure are similar to those observed in other real-world net-
works. Similar to the phonological language network reported in
Vitevitch (2008), the phonographic network possesses a small-
world structure (i.e., short average path length and high average
clustering coefficient), a “small” giant component, and robust
community structure. The degree distribution of the phonographic
network appeared to follow a log-normal distribution. Overall, this
analysis suggests that the structure of the phonographic network is
not merely random and may be worth exploring further. In the
remainder of the article we examine the influence of two mi-
crolevel network metrics on language processing: (a) phono-
graphic degree and (b) phonographic clustering coefficient. These
two network metrics will be described in further detail below.

Phonographic Degree

Phonographic degree refers to the number of words that are
both phonological and orthographic neighbors of a given word.
Therefore, phonographic neighbors differ from the target word by
the substitution, deletion, or addition of one phoneme and the
substitution, deletion, or addition of one letter. For instance, the
phonographic neighbors of “peep” /pip/ include “deep” /dip/,
“keep,” /kip/, and “pep” /pεp/, among others. Note that, as shown
in the case of “pep” /pεp/, it is possible that a phonographic
neighbor differs from the target word by the substitution of one
phoneme and the deletion of one letter—rather than by the sub-
stitution of one phoneme and one letter, or the addition of one
phoneme and one letter, and so on. As an additional example,
consider the word “pant” /pænt/: Its phonographic neighbors in-
clude “punt” /pænt/ and “past” /pæst/, but not “panel” /pænL/
(phonological neighbor) and “want” /wɔnt/ (orthographic neigh-
bor). Based on the words in the giant component of the phono-

graphic network, the mean phonographic degree was 5.82 (SD �
4.56) with a range from 1 to 26.

In the visual word recognition literature, there is a body of
research investigating the influence of phonographic neighborhood
size on language processing (Adelman & Brown, 2007; Muneaux
& Ziegler, 2004; Peereman & Content, 1997). The general finding
is that the presence of phonographic neighbors facilitates naming
of visually presented words (Adelman & Brown, 2007; Peereman
& Content, 1997). Phonographic neighborhood size is the same as
the phonographic degree measure in the phonographic network,
which represents the number of phonographic neighbors a given
word has (i.e., the links in the phonographic network). Whereas
previous psycholinguistic work did not consider the interconnec-
tivity within a word’s neighborhood, the network science approach
allows us to quantify the internal structure of a word’s neighbor-
hood, as demonstrated below using the clustering coefficient mea-
sure. Based on the past literature, one would predict a facilitatory
effect of phonographic degree on visual word recognition.

On the other hand, to date there has not been any work studying
the role of phonographic neighbors in spoken word recognition,
and it is unclear if the presence of more phonographic neighbors
would facilitate or inhibit recognition. The presence of more
phonographic neighbors could inhibit recognition by contributing
greater competition among activated neighbors (Luce & Pisoni,
1998). However, recall that these metrics are obtained from the
phonographic network, which represents the part of the phono-
graphic multiplex where the phonological and orthographic layers
overlap. Based on this, one would predict that the presence of more
phonographic neighbors would facilitate processing in the first
layer of the multiplex (e.g., phonological) by providing more of a
“boost” in activation in the second layer of the multiplex (e.g.,
orthographic).

Phonographic Clustering Coefficient

Clustering coefficient (C) measures the extent to which nodes
tend to cluster together. That is, to what extent are neighbors of a
given word also neighbors of each other. A word with high
phonographic C would have phonographic neighbors that tend to
also be neighbors of each other whereas a word with low phono-
graphic C would have phonographic neighbors that do not tend to
be neighbors of each other. Consider the following two words:
“mold” and “pant.” Both “mold” and “pant” have 14 phonographic
neighbors; however, “mold” has a higher phonographic C (0.440)
as compared to “pant” (phonographic C � 0.121). As shown in
Figure 2 below, the phonographic neighbors of “mold” tend to also
be phonographic neighbors of each other (greater density of links
within the phonographic neighborhood), whereas the phono-
graphic neighbors of “pant” do not tend to be phonographic
neighbors of each other (lower density of links within the phono-
graphic neighborhood). The mean phonographic C of the words in
the giant component of the phonographic network was 0.284
(SD � 0.278) with values covering the full range of C from 0 to
1 (the convention in network science is to compute C just on nodes
in the giant component).

Given previous work showing that phonological C influences
lexical retrieval (Chan & Vitevitch, 2010), one might also expect
that phonographic C would affect the speed and accuracy of lexical
processes. Specifically, Chan and Vitevitch found an inhibitory
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effect of phonological C on various spoken word recognition tasks.
One might therefore expect an inhibitory effect of phonographic C
on visual and spoken word recognition. Nevertheless, it is impor-
tant to note that phonological C metric used by Chan and Vitevitch
was based on the (single) phonological layer of the phonographic
multiplex—whereas phonographic C measures the internal struc-
ture of a word’s phonographic neighborhood (based on both layers
of the phonographic multiplex). A greater value of phonographic C
indicates greater similarity in the phonological and orthographic
neighborhood structures of a given word. Given past work on
“conspiracy models” of word pronunciation, which has shown that
words with more consistent neighbors tend to be more quickly
named (e.g., Taraban & McClelland, 1987), one would expect that
the activation dynamics that occur among similar phonological and
orthographic network structures would also “conspire” and lead to
the facilitation, rather than inhibition, of lexical retrieval. In sum-
mary, with respect to phonographic degree, we expect to replicate
the facilitatory effect of phonographic neighborhoods observed in
visual word recognition (Adelman & Brown, 2007). With respect
to phonographic C, previous work on phonological C effects (Chan
& Vitevitch, 2009) predicts an inhibitory effect of phonographic C
on spoken and visual word recognition, whereas previous work on
conspiracy effects in word recognition (Taraban & McClelland,
1987) predicts a facilitatory effect of phonographic C on spoken
and visual word recognition.

Experiment 1: Auditory Naming Task

In Experiment 1, a conventional psycholinguistic task was used
to examine how phonographic degree and phonographic C might
influence spoken word recognition. In the auditory naming task,
participants repeated the words they heard out loud as quickly and
accurately as possible.

The traditional approach in psycholinguistics is the factorial
experiment, which entails the selection of two sets of words that
are closely matched on a number of variables while manipulating
the variable of interest. As linguistic variables tend to be correlated
with each other (e.g., words with high phonological degree also
tend to occur frequently in the language; Frauenfelder, Baayen, &
Hellwig, 1993), it is sometimes difficult to select stimuli that are
perfectly matched on all extraneous variables. One solution is to
broadly select stimuli and then use a multilevel modeling approach
to statistically control for these variables during the analysis of the
responses. Given the difficulty of matching stimuli in the present
experiments on all extraneous variables, multilevel models will be
used to analyze the data from Experiments 1 and 2.

Method

Participants. Sixty native English speakers were recruited
from the introductory psychology subject pool at the University of
Kansas. All participants had no previous history of speech or
hearing disorders and received partial course credit for their par-
ticipation. The Institution Review Board of the University of
Kansas approved all studies reported in this article.

Materials. Two sets of monosyllabic English words were
selected as stimuli. The first set consisted of words that varied in
phonographic degree and the second set consisted of words that
varied in phonographic C. The first set of words was selected such
that a range of phonographic degree values was represented while
allowing phonographic clustering coefficient to vary freely. The
second set of words was selected such that a range of phono-
graphic clustering coefficients was represented while allowing
phonographic degree to vary freely. There were a total of 160
words: 80 words varying in phonographic degree and 80 words

Figure 2. The phonographic neighborhood of mold (high phonographic C) is shown on the left and the
phonographic neighborhood of pant (low phonographic C) is shown on the right. Both words have the same
number of phonographic neighbors but differ in the level of interconnectivity within their neighborhoods. Nodes
are labeled with conventional orthography and a computer readable phonological transcription.
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varying in phonographic C. A list of the stimuli is provided in
Appendix A.

The stimuli were chosen so as to capture a representative
range of lexical variables, while excluding words that had an
extreme value of any of the following lexical characteristics:
number of phonemes, number of letters, subjective familiarity
(measured on a seven-point scale; Nusbaum, Pisoni, & Davis,
1984), word frequency (log-base 10 of frequency counts from
the SUBTLEXUS corpus; Brysbaert & New, 2009), phonolog-
ical degree (number of words that are phonologically similar to
a given word [i.e., phonological neighborhood density; Luce &
Pisoni, 1998]), phonological C (measures the extent to which
the phonological neighbors of a word are also neighbors of each
other; Chan & Vitevitch, 2009), phonological neighborhood
frequency (average frequency of the phonological neighbors of
a target word), two measures of phonotactic probability (posi-
tional segment probability and biphone probability were ob-
tained from the Phonotactic Probability Calculator; Vitevitch &
Luce, 2004), orthographic degree (number of words that are
orthographically similar to a given word, based on the substi-
tution, addition, or deletion of one letter in a given word),
orthographic C (measures the extent to which the orthographic
neighbors of a word are also neighbors of each other), ortho-
graphic neighborhood frequency (average frequency of the or-
thographic neighbors of a target word), two measures of bigram
frequency (average bigram frequency counts and sum of bigram
frequency counts by position were obtained from the English
Lexicon Project (ELP); Balota et al., 2007). These lexical
variables will be included as covariates in the multilevel model.

The key variables of interest are phonographic degree and
phonographic clustering coefficient. Phonographic degree re-
fers to the number of words that are both phonological and
orthographic neighbors of a given word. Therefore, phono-
graphic neighbors differ from the target word by the substitu-
tion, deletion, or addition of one phoneme and the substitution,
deletion, or addition of one letter. Phonographic clustering
coefficient, C, refers to the extent to which the phonographic
neighbors of a word are also neighbors of each other. To
calculate clustering coefficient, the number of links between
neighbors of a target word was counted and divided by the
number of possible links that could exist among the neighbors.
Therefore, the clustering coefficient is the ratio of the actual
number of links existing among neighbors to the number of all
possible links among neighbors if every neighbor were con-
nected. The value of the clustering coefficient ranges from 0 to
1; when C � 1 all neighbors of the word are neighbors of each
other; when C � 0 no neighbors of the word are neighbors of
each other.

A large set of words that varied across phonographic mea-
sures was selected for the experiments, and this included words
with a phonographic degree of 2. It should be noted that the
phonographic C value of these words was either 0 or 1 (i.e., a
binary value) and is not an accurate representation of the level
of interconnectivity among a word’s phonographic neighbors.
On the other hand, for words with more than two neighbors,
clustering coefficient is a continuous variable that ranges from
0 to 1 that represents the extent to which a word’s neighbors are
also neighbors of each other. Indeed, one known limitation of
the C measure is that its value can be biased by the node’s

degree, whereby nodes with few neighbors tend to have a larger
clustering coefficient as compared to nodes with several neigh-
bors (see Opsahl & Panzarasa, 2009; Soffer & Vázquez, 2005);
although it is important to note that C and degree are not
correlated in the phonological network of language (Vitevitch et
al., 2012). To ensure that the analysis is not biased by words
with phonographic Cs that distort the level of interconnectivity
among neighbors, the following items with a phonographic
degree of 2 were excluded from the analysis: “balm,” “cue,”
“crime” (phonographic C � 1), and “bleed,” “slur,” and “tomb”
(phonographic C � 0).

A male native speaker of American English (Michael S.
Vitevitch) produced the stimuli by speaking at a normal speak-
ing rate into a high-quality microphone in an Industrial Acous-
tics Company sound-attenuated booth. Individual sound files
for each word were edited from the digital recording with
SoundEdit16 (Macromedia, Inc., San Francisco, California).
The Normalization function in SoundEdit16 was used to ensure
that all sound files were comparable in amplitude.

Procedure. Participants were tested individually. Each par-
ticipant was seated in front of an iMac computer that was
connected to a New Micros response box. PsyScope 1.2.2 was
used to randomize and present the stimuli via headphones at a
comfortable listening level. A response box containing a dedi-
cated timing board provided millisecond accuracy for the re-
cording of response times.

In each trial, the word “READY” appeared on the screen for
500 ms. Participants heard one of the randomly selected stimuli
and were instructed to repeat the word as quickly and accurately
as possible. Reaction times (RTs) were measured from stimulus
onset to the onset of the participant’s verbal response. Verbal
responses were recorded for offline scoring of accuracy. The
next trial began 1 s after the participant’s response was made.
Prior to the experimental trials, each participant received five
practice trials to become familiar with the task; these trials were
not included in the subsequent analyses.

Results

Accuracy was scored offline by an undergraduate research
assistant. Trials containing mispronunciations of the word or
responses that triggered the voice-key prematurely (e.g., cough-
ing, “uh”) were coded as errors. The first author (Cynthia S. Q.
Siew) also independently scored �10% of the data. There was
a high level of agreement between the two independent scorers
(Cohen’s � � 0.74; Cohen, 1960).

For the RT data, errors were first excluded, after which
responses below 200 ms and above 2,000 ms were eliminated
before the overall mean and SD of each participant’s RT was
calculated. Trials with latencies that were 2 SDs above or below
each participant’s mean RT were considered outliers and ex-
cluded from analysis. This resulted in �5% of the data being
removed (i.e., �95% of the trials were included in the analysis).
Trials from two items were also excluded from the analysis due
to very low overall item accuracies in the naming task (i.e.,
outliers that were more than 3 SDs below the mean accuracy):
“lung” (60%) and “mount” (72%).

Using the lme4 package in R, a linear mixed effects (LME)
model was used to predict RTs from the naming data and a

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

482 SIEW AND VITEVITCH



generalized linear mixed effects (GLM) model was used to
predict accuracy from the naming data (Bates, Maechler,
Bolker, & Walker, 2014). LME and GLM models are regression
models where the effects of interest (i.e., phonographic degree
and phonographic C) are included as predictors in the model,
and these effects are evaluated by examining the magnitude and
direction of the regression coefficients (Baayen, Davidson, &
Bates, 2008; Janssen, 2012). Mixed effects models are increas-
ingly used to analyze psycholinguistic data as the model can
take into account the random effects of the participant as well
as the effects of specific items used in the experiment (Baayen
et al., 2008). The RT model included the following predictors:
(a) random effects of participants and items, (b) fixed effects of
phonographic degree and phonographic C. The accuracy model
included the same predictors: (a) random effects of participants
and items, (b) fixed effects of phonographic degree and pho-
nographic C. For the RT model, additional lexical variables
(i.e., subjective familiarity, word frequency, number of pho-
nemes, phonological degree, phonological C, phonological
neighborhood frequency, phonotactic probability, number of
letters, orthographic degree, orthographic C, orthographic
neighborhood frequency, bigram frequency) were included as
covariates to control for any influences these variables may
have on word recognition times. For both models all predictor
variables were standardized and for the RT model all covariate
variables were standardized.

Note that the inclusion of lexical variables (e.g., word fre-
quency, familiarity) as covariates led to convergence issues in
the accuracy model. Such models can fail to converge when the
number of predictors in the model is high relative to the number
of trials or data points (i.e., a complex or imbalanced data
structure); and this is particularly true for LME or logistic
models with binary responses (see Eager & Roy, 2017). There-
fore, these lexical variables were not included as covariates in
the accuracy model, and a simpler model that included the main
variables of interest (i.e., phonographic degree and phono-
graphic C) was fitted to the accuracy data instead.

Finally, we briefly note that in LME models, values for
degrees of freedom and p values can only be obtained by
approximations. Although a number of approximation tech-
niques have been developed to estimate these values, we adopt
the Satterthwaite’s method as implemented in the lmerTest
package (Kuznetsova, Brockhoff, & Christensen, 2017) to ob-
tain the degrees of freedom and p values for all the linear mixed
effects models reported in this paper (see Tables 2–5).

For the RT model, a two-step hierarchical approach was used.
Number of letters, number of phonemes, subjective familiarity,
word frequency, orthographic degree, orthographic clustering co-
efficient, orthographic neighborhood frequency, mean bigram fre-
quency counts and mean bigram frequency counts by position,
phonological degree, phonological clustering coefficient, phono-
logical neighborhood frequency, mean positional segment proba-
bility, and mean biphone probability were entered into the LME
model in Step 1. Phonographic degree and phonographic clustering
coefficient were entered into the LME model in Step 2, in addition
to the previously entered variables. Partitioning the analysis into
two steps was done to determine if the network measures from the
phonographic network accounted for additional variance over con-
ventional lexical variables.

RT. Table 2 presents the results of the LME model for naming
RTs. The overall mean RT was 916 ms (SD � 175 ms). The
following fixed effects were significant: phonographic C, famil-
iarity, number of phonemes, number of letters, orthographic de-
gree, orthographic C, orthographic neighborhood frequency, aver-
age bigram counts, and sum of bigram counts by position.
Phonographic degree did not significantly predict naming RTs,
standardized � � �14.67, t � �1.72, p � .088. Phonographic C
significantly predicted naming RTs, standardized � � �12.39,
t � �2.40, p � .017, such that words with higher phonographic C
were more quickly named as compared to words with lower
phonographic C. For each standardized unit increase in phono-
graphic C (approximately 0.153), the average decrease in naming
RTs was 12 ms. The likelihood ratio test indicated that the inclu-
sion of phonographic network measures significantly improved
model fit, �2 � 7.80, df � 2, p � .020.1

Accuracy. Table 3 presents the results of the generalized
LME model for naming accuracies. The overall mean accuracy
was 98.18% (SD � 13.37). No fixed effects were significant. Both
phonographic degree and phonographic C did not significantly
predict naming accuracies, both ps 	 .05.

Discussion

The results of Experiment 1 showed that phonographic C pre-
dicted naming RTs. Higher phonographic C words were named
more quickly than lower phonographic C words, after taking into
account the variance contributed by several lexical variables
known to influence language processing.

Recall that phonographic C refers to the extent to which the
phonographic neighbors of a word are also phonographic neigh-
bors of each other, and that phonographic neighbors are words that
both phonologically and orthographically similar to a target word.
In the present study, a facilitatory effect was observed for words
with a higher level of interconnectivity among its phonographic
neighbors. At first glance, this result appears to contradict previous
work investigating the influence of the phonological clustering
coefficient on spoken word recognition, which found that words
with high phonological clustering coefficients were more slowly
and less accurately processed. Note that Chan and Vitevitch (2009)
used a factorial design, therefore the label “high” is appropriate;
see also Siew, 2017 for a similar finding with the network density
measure.

A simple diffusion framework was used to account for this
finding. In this framework, activation spreads back and forth
between the target word, its neighbors, and other words in the
network (see also the computer simulation reported in Vitevitch,
Ercal, & Adagarla, 2011). For words with highly interconnected
neighborhoods, over time a greater amount of activation will
remain within the neighborhood, instead of diffusing to the rest of

1 Note that an examination of the variance inflation factors (VIFs) for
predictors in this model (and all regression models in the article) revealed
that lexical predictors were moderately correlated with each other (see
Table 6). Nevertheless, VIFs of the predictors were generally within the
acceptable range and the model does not suffer from severe multicollinear-
ity issues. Table 6 shows a correlation matrix of the lexical variables
included in the linear mixed effects model and the results of the analysis
should be interpreted with the understanding that lexical variables tend to
be correlated with each other.
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the network. On the other hand, for words with less interconnected
neighborhoods, over time most of the activation will be spread to
the rest of the network. Based on this account, it is more difficult
for words with highly interconnected neighborhoods (i.e., words
with high phonological clustering coefficients) to “stand out” from
its competitors as compared to words with less interconnected
neighborhoods (i.e., words with low phonological clustering coef-
ficients).

However, it is important to note that although both phonological
C and phonographic C represent the amount of interconnectivity
among a word’s neighbors, these two measures are different in that
phonological C represents the structure of a word’s phonological
neighborhood (i.e., the phonological layer in the phonographic
multiplex), whereas phonographic C represents the structure of a
word’s phonological and orthographic neighborhoods (i.e., the
phonological and orthographic layers of the phonographic multi-
plex). More specifically, phonographic C can be viewed as a
metric that represents the internal structure of the area where the

phonological and orthographic neighborhoods of words overlap.
Therefore, a facilitatory effect might be expected in this case
because higher phonographic C values indicate greater overlap in
the similarity structures of the phonological and orthographic
neighborhoods of words. Based on the activation diffusion frame-
work described earlier, one might expect that for high phono-
graphic C words, the diffusion process operates on both the pho-
nological layer and the orthographic layer of the phonographic
multiplex, leading to similar, overlapping patterns of activation in
the parts of the multiplex where phonological and orthographic
similarity overlap, which reinforce each other during processing
and facilitate the recognition of the target word. It is also note-
worthy that the facilitatory effects of phonographic C align well
with the widely known notion of conspiracy effects, where over-
lapping, consistent phonological and orthographic information
“conspire” to produce facilitative effects in word naming (e.g.,
Taraban & McClelland, 1987). Finally, it is important to highlight
that the diffusion process might predict either inhibitory or facil-

Table 2
Linear Mixed Effects Model Estimates for Fixed and Random Effects for the Auditory Naming
Experiment (Reaction time; Experiment 1)

Variable Variance � SD SE df t p-value

Random effects
Items

Intercept 2096.00 45.78
Participants

Intercept 22,115.00 148.71
Fixed effects

Step 1
Number of phonemes 19.89 11.15 150.49 1.78 .076
Phonological degree �2.74 7.25 150.59 �.38 .706
Phonological C �2.70 4.51 150.74 �.60 .551
Phonological neighborhood frequency �6.79 5.24 150.59 �1.30 .197
Positional segment probability �1.28 7.11 150.63 �.18 .858
Biphone probability �7.78 7.35 150.64 �1.06 .292
Number of letters 16.11 7.20 150.67 2.24 .027�

Orthographic degree 12.77 5.50 150.76 2.32 .022�

Orthographic C 9.58 4.24 151.15 2.26 .025�

Orthographic neighborhood frequency 11.65 4.37 150.86 2.67 .009��

Average bigram counts 14.41 5.24 150.74 2.75 .007��

Sum of bigram counts by position �15.90 6.71 150.50 �2.37 .019�

Subjective familiarity 7.58 4.37 150.76 1.73 .085
Word frequency �.55 4.60 150.77 �.12 .905

Step 2
Phonographic degreea �14.67 8.55 151.06 �1.72 .088
Phonographic Ca �12.34 5.13 150.68 �2.40 .017�

Number of phonemes 24.21 11.01 150.50 2.20 .029�

Phonological degree 2.66 7.69 150.67 .35 .730
Phonological C �1.37 4.49 150.77 �.31 .760
Phonological neighborhood frequency �6.18 5.11 150.60 �1.21 .228
Positional segment probability �.37 6.94 150.64 �.05 .958
Biphone probability �8.62 7.18 150.67 �1.20 .232
Number of letters 15.22 7.05 150.68 2.16 .033�

Orthographic degree 23.81 8.48 151.04 2.81 .006��

Orthographic C 17.75 5.25 151.13 3.38 �.001���

Orthographic neighborhood frequency 11.36 4.30 150.88 2.64 .009��

Average bigram counts 14.53 5.11 150.76 2.85 .005��

Sum of bigram counts by position �16.22 6.65 150.47 �2.44 .016�

Subjective familiarity 8.60 4.28 150.80 2.01 .046�

Word frequency �1.76 4.50 150.83 �.39 .696

a Variables added in Step 2.
� p � .05. �� p � .01. ��� p � .001.
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itative effects depending on the nature of the structural represen-
tation that the process is implemented on. Specifically, greater
network interconnectivity might predict facilitation when the mea-
sure is computed on a representation that represents overlapping
similarity relations of phonology and orthography (i.e., the pho-
nographic network), whereas greater network interconnectivity
might predict increased competition and hence inhibition when the
measure is computed on a representation that only considered one
type of similarity relation between words (e.g., phonological sim-
ilarity only, Chan & Vitevitch, 2010; Luce & Pisoni, 1998).

The present result is significant because it is the first to dem-
onstrate that a network science metric—the phonographic cluster-
ing coefficient—which simultaneously represents the phonological
and orthographic structure of language, influences spoken word
recognition. However, it is important to note that all psycholin-
guistic tasks have unique task demands and the auditory naming
task might reflect, to a certain extent, nonlexical processes involv-
ing repetition ability (Nozari, Kittredge, Dell, & Schwartz, 2010).
To ensure that these findings are not task-specific and that they can
indeed be replicated using a different psycholinguistic task, the
next experiment sought to replicate the present findings using
another traditional task from psycholinguistics—auditory lexical
decision.

Experiment 2: Auditory Lexical Decision

The aim of Experiment 2 was to replicate the findings of
Experiment 1 with another commonly used psycholinguistic
task—auditory lexical decision. In this task, participants are audi-
torily presented with words and nonwords and have to decide if the
given stimulus was a real word or not.

Method

Participants. Sixty-five native English speakers were re-
cruited from the same population described in Experiment 1. All
participants were right-handed and had no previous history of
speech or hearing disorders; none took part in Experiment 1.

Materials. The word stimuli for the present experiment con-
sisted of the same 160 words used in Experiment 1. In addition,
160 phonotactically legal nonwords were constructed by replacing
a phoneme (at any position except the first and last positions) of

the word stimuli with another phoneme. For instance, the nonword
“brame” (/bɹem/) was created by replacing /l/ in the word “blame”
(/blem/) with /ɹ/. The phonological transcriptions of the nonwords
are listed in Appendix B. The nonwords were recorded by the same
male speaker in a similar manner as in Experiment 1. The same
method for editing and digitizing the word stimuli was used to
create individual sound files for each nonword. The Normalization
function in SoundEdit16 was used to ensure that all word and
nonword sound files were comparable in amplitude. Stimuli dura-
tions were equivalent across both words and nonwords, t(318) �
1, p � .92.

Procedure. Participants were tested in groups no larger than
three. The same equipment used in Experiment 1 was used in the
present experiment, except that a response box containing a ded-
icated timing board was used to record response times.

In each trial, the word “READY” appeared on the screen for 500
ms. Participants heard one of the randomly selected stimuli and
were instructed to decide, as quickly and accurately as possible,
whether the item heard was a real English word or a nonword. If
the item was a word, participants pressed the button labeled
“WORD” with their right index finger. If the item was a nonword,
participants pressed the button labeled “NONWORD” with their
left index finger. RTs were measured from stimulus onset to the
onset of the participant’s button press. The next trial began 1s after
the participant’s response was made. Prior to the experimental
trials, each participant received eight practice trials to become
familiar with the task; these trials were not included in the subse-
quent analyses.

Results

The trimming procedure is identical to that used in Experiment
1. For the RT data, errors were first excluded, after which re-
sponses below 200 ms and above 2,000 ms were eliminated before
the overall mean and SD of each participant’s RT was calculated.
Trials with latencies that were 2 SDs above or below each partic-
ipant’s mean RT were removed. This resulted in �7% of the data
being removed (i.e., �93% of the trials were included in the
analysis). Nonword trials were also excluded and not analyzed
further. Trials from four items were also excluded from the anal-
ysis due to very low overall item accuracies in the lexical decision
task (i.e., outliers that were more than 3 SDs below the mean
accuracy): “clod” (23%), “balk” (32%), “plume” (38%), and
“posh” (46%).

As in Experiment 1, LME and GLM models were used to
predict RTs and accuracy respectively from the lexical decision
data. The RT model included the following predictors: (a) random
effects of participants and items, (b) fixed effects of phonographic
degree and phonographic C. The accuracy model included the
same predictors: (a) random effects of participants and items, (b)
fixed effects of phonographic degree and phonographic C. For the
RT model, additional lexical variables (i.e., subjective familiarity,
word frequency, number of phonemes, phonological degree, pho-
nological C, phonological neighborhood frequency, phonotactic
probability, number of letters, orthographic degree, orthographic
C, orthographic neighborhood frequency, bigram frequency) were
included as covariates to control for any influences these variables
may have on word recognition times. For both models all predictor

Table 3
Generalized Linear Mixed Effects Model Estimates for Fixed
and Random Effects for the Auditory Naming Experiment
(Accuracy; Experiment 1)

Variable Variance � SD SE z p-value

Random effects
Items

Intercept 1.74 1.32
Participants

Intercept .32 .56
Fixed effects

Intercept 4.74 .19 24.78 �.001���

Phonographic degree �.01 .14 �.08 .93
Phonographic C �.21 .13 �1.53 .13

��� p � .001.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

485PHONOGRAPHIC NETWORK OF LANGUAGE



variables were standardized and for the RT model all covariate
variables were standardized.

As described previously, the inclusion of lexical variables (e.g.,
word frequency, familiarity) as covariates led to convergence
issues in the accuracy model. Therefore, these lexical variables
were not included as covariates in the accuracy model, and a
simpler model that included the main variables of interest (i.e.,
phonographic degree and phonographic C) was fitted to the accu-
racy data instead.

For the RT model, a two-step hierarchical approach was used.
Number of letters, number of phonemes, subjective familiarity,
word frequency, orthographic degree, orthographic clustering co-
efficient, orthographic neighborhood frequency, mean bigram fre-
quency counts and mean bigram frequency counts by position,
phonological degree, phonological clustering coefficient, phono-
logical neighborhood frequency, mean positional segment proba-
bility and mean biphone probability were entered into the LME
model in Step 1. Phonographic degree and phonographic clustering

coefficient were entered into the LME model in Step 2, in addition
to the previously entered variables. Partitioning the analysis into
two steps was done to determine if the network measures from the
phonographic network accounted for additional variance over con-
ventional lexical variables.

RT. Table 4 presents the results of the LME model for lexical
decision RTs. The overall mean RT was 898 ms (SD � 177 ms).
In Step 2, the following fixed effects were significant: phono-
graphic C, frequency, familiarity, orthographic C, and average
bigram counts. Phonographic degree did not significantly predict
lexical decision RTs, standardized � � �17.73, t � �1.59, p �
.115. Phonographic C significantly predicted lexical decision RTs,
standardized � � �18.41, t � �2.60, p � .010, such that words
with higher phonographic C were more quickly responded to as
compared to words with lower phonographic C. For each stan-
dardized unit increase in phonographic C (approximately 0.153),
the average decrease in naming RTs was 18 ms. The likelihood
ratio test indicated that the inclusion of phonographic network

Table 4
Linear Mixed Effects Model Estimates for Fixed and Random Effects for the Auditory Lexical
Decision Experiment (Reaction Time; Experiment 2)

Variable Variance � SD SE df t p-value

Random effects
Items

Intercept 3127.00 55.92
Participants

Intercept 7138.00 84.49
Fixed effects

Step 1
Number of phonemes 7.54 14.26 149.08 .53 .598
Phonological degree �5.03 9.33 148.19 �.54 .591
Phonological C �5.51 5.64 149.39 �.98 .331
Phonological neighborhood frequency 4.17 6.63 148.18 .63 .531
Positional segment probability 5.94 9.11 148.80 .65 .515
Biphone probability �8.51 9.39 147.95 �.91 .366
Number of letters 7.52 9.18 147.75 .82 .414
Orthographic degree 8.27 7.11 147.58 1.16 .247
Orthographic C 9.38 5.52 147.48 1.70 .092
Orthographic neighborhood frequency 6.52 5.50 148.63 1.19 .238
Average bigram counts 15.38 6.58 147.77 2.34 .021�

Sum of bigram counts by position �13.74 8.64 147.28 �1.59 .114
Subjective familiarity �12.77 5.15 151.63 �2.48 .014�

Word frequency �10.06 5.73 148.32 �1.76 .081
Step 2

Phonographic degreea �17.73 11.18 147.79 �1.59 .115
Phonographic Ca �18.41 7.07 147.50 �2.60 .010�

Number of phonemes 12.06 14.00 149.05 .86 .390
Phonological degree .46 9.76 148.07 .05 .963
Phonological C �2.64 5.68 149.35 �.47 .642
Phonological neighborhood frequency 5.14 6.45 147.91 .80 .427
Positional segment probability 7.37 8.87 148.60 .83 .407
Biphone probability �10.00 9.14 147.77 �1.09 .276
Number of letters 6.16 8.96 147.47 .69 .493
Orthographic degree 21.80 11.17 147.47 1.95 .053
Orthographic C 22.33 7.22 147.09 3.09 .002��

Orthographic neighborhood frequency 5.36 5.39 148.14 .99 .322
Average bigram counts 15.61 6.40 147.48 2.44 .016�

Sum of bigram counts by position �13.42 8.53 146.93 �1.57 .118
Subjective familiarity �13.08 5.01 151.58 �2.61 .010�

Word frequency �11.72 5.60 148.23 �2.09 .038�

a Variables added in Step 2.
� p � .05. �� p � .01.
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measures significantly improved model fit, �2 � 8.40, df � 2, p �
.015.

Accuracy. Table 5 presents the results of the GLM model for
lexical decision accuracies. The overall mean accuracy was
88.06% (SD � 32.43). No fixed effects were significant. Both
phonographic degree and phonographic C did not significantly
predict lexical decision accuracies, both ps 	 .05.

Discussion

The results of Experiment 2 showed that phonographic C pre-
dicted lexical decision RTs, replicating the results of Experiment
1. High phonographic C words were recognized more quickly than
low phonographic C words, after taking into account the variance
contributed by several lexical variables known to influence lan-
guage processing.

As discussed earlier, phonographic C represents the internal
structure of the area where the phonological and orthographic
neighborhoods of words overlap, such that higher phonographic C
values indicate greater overlap in the similarity structures of the
phonological and orthographic neighborhoods of words. Based on
the activation diffusion framework described above, similar, over-
lapping patterns of activation are more likely to occur in the
phonological and orthographic neighborhood structures of words
with higher phonographic C words, as compared to words with
lower phonographic C. These similar, overlapping patterns of
activation reinforce each other during processing, and hence serve
to facilitate the recognition of the target word.

In addition, it is worth noting that phonographic C was a
significant predictor in both experiments. The effect of phono-
graphic degree was in the same direction as phonographic C
(higher phonographic degree was associated with faster RTs),
although it is important to note that this effect was marginally
significant in both experiments (ps � .09 and .11 in auditory
naming and lexical decision respectively). Both measures of de-
gree and C capture somewhat different aspects of the phonological
and orthographic similarity structure of language. Phonographic
degree simply represents the number of words that are both pho-
nologically and orthographically similar to a given word, whereas
phonographic C captures more subtle aspects of the similarity
structure—namely, the internal connectivity among these phono-
graphic neighbors. Overall, the results suggest that phonographic

Table 5
Generalized Linear Mixed Effects Model Estimates for Fixed
and Random Effects for the Auditory Lexical Decision
Experiment (Accuracy; Experiment 2)

Variable Variance � SD SE z p-value

Random effects
Items

Intercept 1.52 1.23
Participants

Intercept .37 .61
Fixed effects

Intercept 2.75 .13 20.63 �.001���

Phonographic degree .12 .11 1.08 .28
Phonographic C .07 .11 .64 .53

��� p � .001.

T
ab

le
6

C
or

re
la

ti
on

M
at

ri
x

of
A

ll
P

re
di

ct
or

s
In

cl
ud

ed
in

th
e

L
in

ea
r

M
ix

ed
E

ff
ec

t
an

d
R

eg
re

ss
io

n
M

od
el

s

V
ar

ia
bl

e
Ph

on
og

ra
ph

ic
C

Su
bj

ec
tiv

e
fa

m
ili

ar
ity

W
or

d
fr

eq
ue

nc
y

N
um

be
r

of
ph

on
em

es
Ph

on
ol

og
ic

al
de

gr
ee

Ph
on

ol
og

ic
al

C

Ph
on

ol
og

ic
al

ne
ig

hb
or

ho
od

fr
eq

ue
nc

y

Po
si

tio
na

l
se

gm
en

t
pr

ob
ab

ili
ty

B
ip

ho
ne

pr
ob

ab
ili

ty
N

um
be

r
of

le
tte

rs
O

rt
ho

gr
ap

hi
c

de
gr

ee
O

rt
ho

gr
ap

hi
c

C

O
rt

ho
gr

ap
hi

c
ne

ig
hb

or
ho

od
fr

eq
ue

nc
y

A
ve

ra
ge

bi
gr

am
co

un
ts

Su
m

of
bi

gr
am

co
un

ts
by

po
si

tio
n

Ph
on

og
ra

ph
ic

de
gr

ee
�

.1
1

.0
2

.0
7

�
.2

9
.5

7
.0

2
�

.0
3

�
.1

1
�

.1
8

�
.4

2
.8

6
�

.0
7

.1
2

.1
2

�
.1

8
Ph

on
og

ra
ph

ic
C

.0
5

�
.0

3
�

.0
5

�
.0

3
.2

0
.0

1
�

.0
8

�
.0

5
�

.0
3

�
.0

3
.5

4
.0

8
�

.1
6

�
.0

8
Su

bj
ec

tiv
e

fa
m

ili
ar

ity
.3

5
�

.1
0

.0
2

�
.0

7
.1

7
�

.1
3

�
.0

6
�

.0
7

.0
4

.0
2

.0
7

�
.0

4
�

.0
1

W
or

d
fr

eq
ue

nc
y

�
.1

5
.1

7
.0

2
.2

8
�

.0
5

.0
1

.0
9

.1
1

�
.1

1
.1

3
.2

5
.2

7
N

um
be

r
of

ph
on

em
es

�
.7

5
�

.1
9

�
.3

6
.7

3
.6

8
.5

8
�

.3
7

�
.0

7
�

.2
4

.1
5

.2
2

Ph
on

ol
og

ic
al

de
gr

ee
.1

1
.2

7
�

.4
5

�
.4

6
�

.4
5

.5
4

�
.0

3
.2

6
.0

9
�

.0
8

Ph
on

ol
og

ic
al

C
.1

2
�

.3
4

�
.1

4
.0

5
.0

8
.2

3
.0

0
�

.1
2

�
.0

5
Ph

on
ol

og
ic

al
ne

ig
hb

or
ho

od
fr

eq
ue

nc
y

�
.2

2
�

.0
2

.0
4

.0
3

�
.0

7
.3

3
.2

4
.3

7
Po

si
tio

na
l

se
gm

en
t

pr
ob

ab
ili

ty
.7

1
.3

2
�

.1
6

�
.2

0
�

.1
7

.2
7

.3
4

B
ip

ho
ne

pr
ob

ab
ili

ty
.3

5
�

.1
9

�
.1

8
�

.1
0

.4
0

.5
3

N
um

be
r

of
le

tte
rs

�
.5

2
.0

2
�

.1
2

.2
6

.5
2

O
rt

ho
gr

ap
hi

c
de

gr
ee

�
.0

9
.2

3
.1

1
�

.1
5

O
rt

ho
gr

ap
hi

c
C

.0
7

�
.2

7
�

.2
5

O
rt

ho
gr

ap
hi

c
ne

ig
hb

or
ho

od
fr

eq
ue

nc
y

.0
4

.0
8

A
ve

ra
ge

bi
gr

am
co

un
ts

.5
5

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

487PHONOGRAPHIC NETWORK OF LANGUAGE



C is a better predictor of spoken word recognition performance
than phonographic degree. Together the results of Experiments 1
and 2 demonstrate that the phonographic clustering coefficient, a
network science metric that simultaneously represents the phono-
logical and orthographic structure of language, influences spoken
word recognition.

English Lexicon Project Analyses

The availability of item-level behavioral data for a large set of
words resulting from megastudies of visual word recognition (New
et al., 2006; Yap & Balota, 2009) offers another way to comple-
ment the conventional psycholinguistic approach of factorial ex-
periments in a small-scale study (Balota, Yap, Hutchison, & Cor-
tese, 2012). In a factorial experiment, psycholinguists typically
carefully select word stimuli such that groups of words are
matched on a variety of lexical characteristics while manipulating
the lexical variable of interest, whereas in the megastudy approach,
extraneous lexical variables can be statistically controlled for. In
addition, whereas lab-based experiments with carefully controlled
stimuli can answer the question of whether phonographic degree
and phonographic C influence word recognition, the large-
database approach can answer the slightly different question of
how much influence phonographic degree and phonographic C
have on word recognition performance, after taking into account
the influence of other lexical variables on word recognition. The
database approach also allows for replication using a larger set of
stimuli. In this section a regression analysis of words in the ELP
was conducted to determine if phonographic degree and phono-
graphic clustering coefficient are significant predictors of perfor-
mance of speeded visual naming and visual lexical decision for a
large set of words, after taking into account the contributions of
other lexical variables.

Method

Database. The English Lexicon Project is a large database
that contains descriptive and behavioral data for over 40,000 words
(see Balota et al., 2007 for a complete description of the database).
It is available at http://elexicon.wustl.edu.

Dataset/materials. ELP behavioral data exist for 2,914 of the
3,292 (�90%) words in the giant component of the phonographic
network. It is important to note that some of the words in the
phonographic network do not have a “meaningful” phonographic
clustering coefficient value. For instance, it is not possible to
calculate the clustering coefficient for words with either zero or
one phonographic neighbor(s), that is, phonographic C for these
words is undefined. As discussed earlier, for words with more than
two neighbors, clustering coefficient is a continuous variable that
ranges from zero to one that represents the extent to which a
word’s neighbors are also neighbors of each other. However, the
phonographic clustering coefficient for words with two phono-
graphic neighbors is binary (i.e., either zero or one) and does not
accurately represent the level of interconnectivity among a word’s
phonographic neighbors. Therefore, to ensure that the analysis was
not biased by the presence of several words with an undefined
phonographic C (i.e., words with a phonographic degree of 1), or
by words with phonographic Cs that distort the level of intercon-
nectivity among neighbors (i.e., words with a phonographic degree

of 2), words with two or fewer phonographic neighbors were
excluded, resulting in a total of 2,120 words for the subsequent
regression analyses.

Results

Item-level regression analyses were conducted on the mean RTs
and accuracies for 2,120 words for speeded naming and visual
lexical decision tasks that were obtained from the ELP. The
dependent variables consisted of z-scored RTs and accuracy rates,
averaged across participants for each word, for both speeded
naming and lexical decision tasks. Each participant’s raw naming
and lexical decision latencies were first standardized using a
z-score transformation, and the mean z-score for all participants
presented with a particular word is then computed for that word
(Balota et al., 2007). Although both raw and z-scored RTs are
available in the ELP, z-scored RTs, instead of raw RTs, were
analyzed to reduce the likelihood that a single participant may
disproportionately influence the item means (Balota et al., 2007).

A two-step hierarchical approach was used. Number of letters,
number of phonemes, subjective familiarity, word frequency, or-
thographic degree, orthographic clustering coefficient, ortho-
graphic neighborhood frequency, mean bigram frequency counts
and mean bigram frequency counts by position, phonological
degree, phonological clustering coefficient, phonological neigh-
borhood frequency, mean positional segment probability and mean
biphone probability were entered into the regression model in Step
1. Phonographic degree and phonographic clustering coefficient
were entered into the regression model in Step 2, in addition to the
previously entered variables. Partitioning the regression analysis
into two steps was done to determine if the network measures from
the phonographic network accounted for additional variance over
conventional lexical variables.

Speeded naming.
RTs. Table 7 shows the results of the regression analysis on

z-scored naming RTs. In Step 1, the following variables signifi-
cantly predicted naming RTs: number of phonemes, phonological
degree, positional segment probability, biphone probability, num-
ber of letters, orthographic C, average bigram counts, sum of
bigram counts by position, familiarity, and frequency. Together,
the variables entered at Step 1 explained 28.0% of the variance in
naming RTs, accounting for a significant proportion of the vari-
ance in naming RTs, R2 � .280, F(14, 2103) � 58.27, p � .001.

In Step 2, the following variables significantly predicted RTs:
positional segment probability, biphone probability, number of
letters, orthographic degree, average bigram counts, sum of bigram
counts by position, familiarity, frequency, and phonographic de-
gree. Phonographic degree significantly predicted visual naming
RTs, standardized � � �0.0763, t(2101) � �7.72, p � .001, such
that words with higher phonographic degree were more quickly
named as compared to words with lower phonographic degree. For
each standardized unit increase in phonographic degree (approxi-
mately 4.31), the average decrease in z-scored naming RTs was
0.076 SDs. Phonographic C did not significantly predict naming
RTs, standardized � � �0.0102, t(2101) � �1.37, p � .172. The
influence of phonographic variables accounted for an additional
1.9% of the variance, 
R2 � .019, F(2, 2101) � 29.85, p � .001.
Together, the variables entered at both steps explained 29.9% of
the variance in naming RTs, accounting for a significant propor-
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tion of the variance in naming RTs, R2 � .299, F(16, 2101) �
56.12, p � .001.

Accuracy. Table 8 shows the results of the regression analysis
on visual naming accuracies. In Step 1, the following variables
significantly predicted accuracies: number of phonemes, phono-
logical neighborhood frequency, biphone probability, orthographic
C, orthographic neighborhood frequency, sum of bigram counts by
position, familiarity, and frequency. Together, the variables en-
tered at Step 1 explained 27.5% of the variance in naming accu-
racies, accounting for a significant proportion of the variance in
naming accuracies, R2 � .275, F(14, 2103) � 56.86, p � .001.

In Step 2, the following variables significantly predicted naming
accuracies: biphone probability, orthographic degree, orthographic
neighborhood frequency, sum of bigram counts by position, fa-
miliarity, frequency, and phonographic degree. Phonographic de-
gree significantly predicted naming accuracies, standardized � �
0.0108, t(2101) � 4.07, p � .001, such that words with higher
phonographic degree were more accurately named as compared to
words with lower phonographic degree. For each standardized unit
increase in phonographic degree (approximately 4.31), the average
increase in naming accuracies was 1.09%. Phonographic C did not
significantly predict naming accuracies, standardized � �

�0.0017, t(2101) � 1, p � .405. The influence of phonographic
variables accounted for an additional 0.6% of the variance, 
R2 �
.006, F(2, 2101) � 9.22, p � .001. Together, the variables entered
at both steps explained 28.1% of the variance in visual naming
accuracies, accounting for a significant proportion of the variance
in naming accuracies, R2 � .281, F(16, 2101) � 51.29, p � .001.

Visual lexical decision.
RTs. Table 9 shows the results of the regression analysis on

z-scored lexical decision RTs. In Step 1, the following variables
significantly predicted visual lexical decision RTs: number of
letters, orthographic degree, orthographic C, familiarity, and fre-
quency. Together, the variables entered at Step 1 explained 50.5%
of the variance in lexical decision RTs, accounting for a significant
proportion of the variance in lexical decision RTs, R2 � .505,
F(14, 2103) � 153.50, p � .001.

In Step 2, the following variables significantly predicted lexical
decision RTs: number of letters, average bigram counts, familiar-
ity, frequency, and phonographic degree. Phonographic degree
significantly predicted lexical decision RTs, standardized
� � �0.0348, t(2101) � �3.01, p � .003, such that words with
higher phonographic degree were more quickly responded to as
compared to words with lower phonographic degree. For each

Table 7
Regression Results for English Lexicon Project Naming Reaction Times

Variable � SE t p R2 
R2

Step 1
Number of phonemes �.0254 .0103 �2.46 .014�

Phonological degree �.0191 .00724 �2.64 .008��

Phonological C .00742 .00465 1.60 .11
Phonological neighborhood frequency .00356 .00529 .673 .50
Positional segment probability .0435 .00734 5.92 �.001���

Biphone probability �.0252 .00710 �3.55 �.001���

Number of letters .0723 .00832 8.69 �.001���

Orthographic degree �.00843 .00669 �1.26 .21
Orthographic C �.0132 .00453 �2.92 .004��

Orthographic neighborhood frequency .00734 .00525 1.40 .16
Average bigram counts .0235 .00501 4.70 �.001���

Sum of bigram counts by position �.0323 .00648 �4.99 �.001���

Subjective familiarity �.0516 .00451 �11.44 �.001���

Word frequency �.0450 .00486 �9.26 �.001���

.280���

Step 2
Number of phonemes �.0138 .0103 �1.34 .18
Phonological degree �.00337 .00773 .436 .66
Phonological C .00786 .00468 1.68 .09
Phonological neighborhood frequency .000791 .00524 .151 .88
Positional segment probability .0447 .00726 6.16 �.001���

Biphone probability �.0227 .00701 �3.24 .001��

Number of letters .0758 .00822 9.22 �.001���

Orthographic degree .0523 .0103 5.10 �.001���

Orthographic C �.000485 .00739 �.066 .95
Orthographic neighborhood frequency .00799 .00518 1.54 .12
Average bigram counts .0260 .00495 5.25 �.001���

Sum of bigram counts by position �.0420 .00652 �6.44 �.001���

Subjective familiarity �.0501 .00445 �11.26 �.001���

Word frequency �.0489 .00482 �10.15 �.001���

Phonographic degree �.0763 .00989 �7.72 �.001���

Phonographic C �.0102 .00744 �1.37 .17
.299��� .019���

Note. N � 2,120. “Phonographic degree” and “Phonographic C” were � variables added in Step 2, as in Table
2 and Table 4.
� p � .05. �� p � .01. ��� p � .001.
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standardized unit increase in phonographic degree (approximately
4.31), the average decrease in z-scored lexical decision RTs was
0.035 SDs. Phonographic C did not significantly predict lexical
decision RTs, standardized � � 0.0010, t(2101) � 1, p � .909.
The influence of phonographic variables accounted for an addi-
tional 0.3% of the variance, 
R2 � .003, F(2, 2101) � 4.66, p �
.010. Together, the variables entered at both steps explained 50.8%
of the variance in lexical decision RTs, accounting for a significant
proportion of the variance in lexical decision RTs, R2 � .508,
F(16, 2101) � 135.40, p � .001.

Accuracy. Table 10 shows the results of the regression anal-
ysis on visual lexical decision accuracies. In Step 1, the following
variables significantly predicted lexical decision accuracies: pho-
nological neighborhood frequency, number of letters, orthographic
degree, sum of bigram counts by position, familiarity, and fre-
quency. Together, the variables entered at Step 1 explained 65.0%
of the variance in lexical decision accuracies, accounting for a
significant proportion of the variance in lexical decision accura-
cies, R2 � .650, F(14, 2103) � 279.20, p � .001.

In Step 2, the following variables significantly predicted lexical
decision accuracies: phonological degree, phonological neighbor-
hood frequency, number of letters, familiarity, frequency, and

phonographic degree. Phonographic degree significantly predicted
visual lexical decision accuracies, standardized � � 0.0176,
t(2101) � 3.05, p � .002, such that words with higher phono-
graphic degree were more accurately responded to as compared to
words with lower phonographic degree. For each standardized unit
increase in phonographic degree (approximately 4.31), the average
increase in lexical decision accuracies was 1.76%. Phonographic C
did not significantly predict lexical decision accuracies, standard-
ized � � 0.0017, t(2101) � 1, p � .692. The influence of
phonographic variables accounted for an additional 0.2% of the
variance, 
R2 � .002, F(2, 2101) � 4.66, p � .01. Together, the
variables entered at both steps explained 65.2% of the variance in
lexical decision accuracies, accounting for a significant proportion
of the variance in lexical decision accuracies, R2 � .652, F(16,
2101) � 245.70, p � .001.

Discussion

The results of the ELP analyses showed that phonographic
degree, but not phonographic C, predicted naming and lexical
decision RTs in visual word recognition. Words with higher pho-
nographic degree were named and recognized more quickly than

Table 8
Regression Results for English Lexicon Project Naming Accuracies

Variable � SE t p R2 
R2

Step 1
Number of phonemes .00605 .00275 2.20 .028�

Phonological degree .00293 .00193 1.52 .13
Phonological C .000633 .00124 .512 .61
Phonological neighborhood frequency �.00327 .00141 �2.32 .020�

Positional segment probability �.00349 .00195 �1.79 .074†

Biphone probability .00534 .00189 2.83 .005��

Number of letters .00111 .00221 .502 .62
Orthographic degree .00159 .00178 .892 .37
Orthographic C .00243 .00120 2.02 .043�

Orthographic neighborhood frequency .00290 .00140 2.08 .038�

Average bigram counts �.00130 .00133 �.973 .33
Sum of bigram counts by position �.00516 .00172 �3.00 .003��

Subjective familiarity .0274 .00120 22.86 �.001���

Word frequency .00353 .00129 2.73 .006��

.275���

Step 2
Number of phonemes .00432 .00277 1.56 .12
Phonological degree �.000402 .00208 �.194 .85
Phonological C .000977 .00126 .777 .44
Phonological neighborhood frequency �.00274 .00141 �1.95 .051†

Positional segment probability �.00349 .00195 �1.79 .073†

Biphone probability .00490 .00188 2.60 .009��

Number of letters .000615 .00221 .279 .78
Orthographic degree �.00679 .00276 �2.46 .014�

Orthographic C .00289 .00198 1.46 .15
Orthographic neighborhood frequency .00282 .00139 2.03 .043�

Average bigram counts �.00169 .00133 �1.27 .20
Sum of bigram counts by position �.00376 .00175 �2.15 .032�

Subjective familiarity .0272 .00120 22.78 �.001���

Word frequency .00411 .00129 3.17 .002��

Phonographic degree .0108 .00265 4.07 �.001���

Phonographic C �.00167 .00200 �.83 .40
.281��� .006���

Note. N � 2,120. “Phonographic degree” and “Phonographic C” were � variables added in Step 2, as in Table
2 and Table 4.
† p � .10. � p � .05. �� p � .01. ��� p � .001.
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words with lower phonographic degree, after taking into account
the variance contributed by several lexical variables known to
influence language processing. These analyses replicated previous
work showing that the presence of phonographic neighbors facil-
itates naming of visually presented words (Adelman & Brown,
2007; Peereman & Content, 1997) and extends that previous
research to demonstrate similar effects in the visual lexical-
decision task.

Overall, the results from the ELP analyses and psycholinguistic
tasks generally show that greater phonological and orthographic
similarity facilitates word recognition in both visual and auditory
modalities. Furthermore, it appears that phonographic degree in-
fluences visual word recognition but not spoken word recognition,
whereas phonographic C influences spoken word recognition but
not visual word recognition. It may simply be the case that one
network measure is capturing more of the variance in one modality
than another—perhaps reflecting differences in the way phono-
graphic similarity is processed in different modalities. In visual
word recognition, a measure that simply represents the number of
phonographic neighbors such as phonographic degree may be the
better predictor, whereas a subtler metric such as phonographic C
that captures the interconnectivity among those phonographic

neighbors may be the better predictor in spoken word recognition.
Unlike visually presented words, auditory signals unfold over
time, which may allow for more time for activation to spread, not
just from the target word to its neighbors, but also among its
neighbors such that the internal structure of the phonographic
neighborhood plays a role in lexical retrieval. Within the visual
modality, however, the size of the phonographic neighborhood
may take precedence over its internal structure because the initial
activation of a target word’s phonographic neighbors may already
be sufficient to “nudge” the visual word recognition system over
the threshold for recognition.

General Discussion

To recapitulate, the main findings were that phonographic de-
gree significantly influenced visual word recognition and not spo-
ken word recognition, whereas phonographic C significantly in-
fluenced spoken word recognition and not visual word recognition.
Specifically, the presence of more phonographic neighbors (i.e.,
degree) facilitated word recognition in the visual modality, and
greater interconnectivity within the phonographic neighborhood
(i.e., C) facilitated word recognition in the auditory modality.

Table 9
Regression Results for English Lexicon Project Visual Lexical Decision Reaction Times

Variable � SE t p R2 
R2

Step 1
Number of phonemes .00948 .00119 .795 .43
Phonological degree .000773 .00836 .092 .93
Phonological C .00787 .00537 1.47 .14
Phonological neighborhood frequency .00906 .00611 1.48 .14
Positional segment probability �.0100 .00848 �1.185 .24
Biphone probability .00173 .00820 .210 .83
Number of letters �.0206 .00961 �2.15 .032�

Orthographic degree �.0242 .00772 �3.14 .002��

Orthographic C �.0119 .00523 �2.27 .023�

Orthographic neighborhood frequency �.00159 .00606 �.261 .79
Average bigram counts .0113 .00579 1.96 .050†

Sum of bigram counts by position .00240 .00748 .321 .75
Subjective familiarity �.133 .00521 �25.45 �.001���

Word frequency �.121 .00561 �21.49 �.001���

.505���

Step 2
Number of phonemes .0149 .0120 1.24 .22
Phonological degree .0113 .00903 1.25 .21
Phonological C .00733 .00548 1.34 .18
Phonological neighborhood frequency .00756 .00613 1.23 .22
Positional segment probability �.00979 .00848 �1.15 .25
Biphone probability .00302 .00820 .369 .71
Number of letters �.0190 .00961 �1.98 .048�

Orthographic degree .00307 .0120 .255 .80
Orthographic C �.00999 .00863 �1.16 .25
Orthographic neighborhood frequency �.00130 .00605 �.215 .83
Average bigram counts .0125 .00579 2.17 .030�

Sum of bigram counts by position �.00206 .00761 �.271 .79
Subjective familiarity �.132 .00520 �25.35 �.001���

Word frequency �.122 .00563 �21.72 �.001���

Phonographic degree �.0348 .0116 �3.01 .003��

Phonographic C .000994 .00870 .114 .91
.508��� .003��

Note. N � 2,120. “Phonographic degree” and “Phonographic C” were � variables added in Step 2, as in Table
2 and Table 4.
† p � .10. � p � .05. �� p � .01. ��� p � .001.
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The finding of a significant effect of phonographic degree on
visual word recognition is consistent with previous literature
(Adelman & Brown, 2007), although it should be noted that in
their analyses Adelman and Brown used a more limited definition
of phonographic neighbors by only considering words that differed
by the substitution of one phoneme and letter. In the present study,
the phonographic neighbors included words that differed from the
target word by the substitution, addition, or deletion of either one
phoneme or one letter. On the other hand, a significant influence of
phonographic C on spoken word recognition represents a novel
finding, as the influence of phonographic neighbors has never been
previously examined in the spoken modality.

These results indicate that the phonographic relationships
among words play an important role in both spoken and visual
word recognition. Recall that the phonographic network repre-
sented the section of the phonographic multiplex where phonolog-
ical and orthographic links overlapped. Therefore, phonographic
degree and phonographic C represent the extent to which the
similarity structure in both layers of the individual layers “mirror”
each other, such that they reinforce the similarity structure in both
layers of the phonographic multiplex.

The key takeaway from these experiments and analyses is that
the presence of phonographic links, which represent both phono-
logical and orthographic similarity relationships among words, as
well as the structure of these links, facilitates spoken and visual
word recognition, even after taking into account the influence of
(a) conventional measures of orthographic and phonological sim-
ilarity (i.e., phonological and orthographic degree or neighborhood
density), and (b) “single-layer” network measures of orthographic
and phonological similarity (i.e., phonological and orthographic
clustering coefficient). The results demonstrate how simultane-
ously representing the phonological and orthographic similarity of
words within a phonographic multiplex can lead to a more nuanced
understanding of how similarity influences spoken and visual word
recognition.

Similarity Effects in Spoken and Visual Word
Recognition

An intriguing aspect of the present findings is that phonographic
degree facilitated visual word recognition but not spoken word
recognition, and phonographic C facilitated spoken word recogni-

Table 10
Regression Results for English Lexicon Project Visual Lexical Decision Accuracies

Variable � SE t p R2 
R2

Step 1
Number of phonemes .000508 .00597 .085 .93
Phonological degree �.00514 .00418 �1.23 .22
Phonological C �.0000376 .00268 �.014 .99
Phonological neighborhood frequency �.00806 .00306 �2.64 .008��

Positional segment probability �.000768 .00424 �.181 .86
Biphone probability .00329 .00410 .802 .42
Number of letters .0243 .00481 5.06 �.001���

Orthographic degree .0156 .00386 4.05 �.001���

Orthographic C .00295 .00261 1.13 .26
Orthographic neighborhood frequency .00145 .00303 .478 .63
Average bigram counts .000382 .00289 .132 .90
Sum of bigram counts by position �.00751 .00374 �2.01 .045�

Subjective familiarity .130 .00260 49.93 �.001���

Word frequency .0294 .00281 10.46 �.001���

.650���

Step 2
Number of phonemes �.00218 .00602 �.363 .72
Phonological degree �.0104 .00452 �2.30 .022�

Phonological C �.0000581 .00274 �.021 .98
Phonological neighborhood frequency �.00739 .00306 �2.41 .016�

Positional segment probability �.00102 .00424 �.241 .81
Biphone probability .00270 .00410 .658 .51
Number of letters .0235 .00481 4.89 �.001���

Orthographic degree .00165 .00600 .274 .78
Orthographic C .000269 .00432 .062 .95
Orthographic neighborhood frequency .00130 .00303 .430 .67
Average bigram counts �.000200 .00290 �.069 .95
Sum of bigram counts by position �.00528 .00381 �1.39 .17
Subjective familiarity .130 .00260 49.84 �.001���

Word frequency .0303 .00282 10.74 �.001���

Phonographic degree .0176 .00578 3.05 .002��

Phonographic C .00172 .00435 .396 .69
.652��� .002�

Note. N � 2,120. “Phonographic degree” and “Phonographic C” were � variables added in Step 2, as in Table
2 and Table 4.
� p � .05. �� p � .01. ��� p � .001.
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tion but not visual word recognition. This divergence may reflect
differences in the way that written and spoken words are pro-
cessed. A long-standing question within psycholinguistics is
whether similarity among phonological and orthographic word
forms facilitates or hinders word recognition. Across various mea-
sures of similarity (e.g., degree/neighborhood density, Levenshtein
distance, clustering coefficient), the results from the literature
indicate that greater similarity among orthographic representations
facilitates visual word recognition (Andrews, 1997; Siew, 2018;
Yarkoni, Balota, & Yap, 2008) and greater similarity among
phonological representations inhibits spoken word recognition
(Chan & Vitevitch, 2009; Goh, Suárez, Yap, & Tan, 2009; Luce &
Pisoni, 1998; Suárez, Tan, Yap, & Goh, 2011). On the other hand,
the pattern of results is less clear in studies that investigated the
influence of phonological similarity on visual word recognition
(Grainger et al., 2005; Yates et al., 2004; Yates, 2013) and the
influence of orthographic similarity on spoken word recognition
(Muneaux & Ziegler, 2004; Ziegler et al., 2003).

The contradictory effects of neighborhood density in visual and
spoken word recognition have been examined in a computational
study conducted by Chen and Mirman (2012). In this paper, Chen
and Mirman simulated the dynamics of interactive activation and
competition in a simple model and showed that having more
(orthographic) neighbors facilitated visual word recognition due to
weakly activated neighbors leading to an overall facilitatory effect,
whereas having more (phonological) neighbors inhibited spoken
word recognition due to strongly activated neighbors leading to an
overall inhibitory effect. Their model could provide one possible
mechanistic account of the finding that phonographic neighbors
facilitated visual word recognition. Specifically, words with more
phonographic neighbors could lead to the activation of several
weakly active neighbors that could result in a net facilitative effect,
resulting in facilitatory effect of phonographic degree in visual
word recognition.

On the other hand, Chen and Mirman (2012) suggested that the
inhibitory effects of C on spoken word recognition were due to
“particular patterns of neighbor clustering lead(ing) the neighbors
to enhance one another’s activation” (p. 12), resulting in net
inhibitory effects of C as reported by Chan and Vitevitch (2009).
Based on this explanation, it is unclear how this model could be
extended to account for the facilitatory effects of phonographic C
on spoken word recognition.

Before proceeding, it is important to note that the present article
differs from Chen and Mirman’s simulations as well as previous
studies in a fundamental way. Adopting a multiplex approach from
network science to simultaneously represent a language’s phono-
logical and orthographic similarity structure represents a novel
theoretical conceptualization that departs from conventional ways
of investigating phonological and orthographic similarity effects
on word recognition. Such an approach can provide network
metrics (a few of which are investigated in this work) that simul-
taneously represented the phonological and orthographic similarity
structure of words in the language. However, in previous work,
phonology and orthography were treated as separate influences to
be manipulated or controlled for, making it difficult to assess the
seemingly contradictory effects of similarity on word recognition.
For instance, Chen and Mirman (2012) examined the effects of
phonological neighborhood density on spoken word recognition
and orthographic neighborhood density on visual word recogni-

tion, but not vice versa (i.e., orthographic neighborhood effects on
spoken word recognition and phonological neighborhood effects
on visual word recognition) as their model did not explicitly
consider how the overlap or interaction between phonological and
orthographic similarity structures affected word recognition.

Consider the finding that phonological degree has an inhibitory
effect in spoken word recognition (e.g., Goh et al., 2009) but a
facilitatory effect in visual word recognition (e.g., Grainger et al.,
2005), whereas phonological clustering coefficient has an inhibi-
tory effect in both spoken (Chan & Vitevitch, 2010) and visual
word recognition (Yates, 2013). After closely controlling for the
effect of orthographic degree, Grainger et al. found that phono-
logical degree facilitated visual word processing, such that the
processing of words with many phonological neighbors is facili-
tated as compared to words with few phonological neighbors
across various tasks. Grainger and colleagues argue that greater
consistency between phonology and orthography contributed to
this facilitative effect. However, in Yates (2013), it is not clear if
orthographic similarity (i.e., orthographic clustering coefficient)
among the word stimuli was explicitly controlled for. This raises
questions about the inhibitory effect of phonological clustering
coefficient in visual word recognition reported by Yates (2013).
Overall, conceptualizing phonology and orthography as separate
effects does not necessarily appear to be the most productive way
of addressing the question of whether similarity among phonolog-
ical and orthographic word forms facilitates or hinders word rec-
ognition.

In contrast, the network metrics investigated in this article,
degree and clustering coefficient, represent microlevel network
measures of both phonological and orthographic similarity, with
each metric representing different structural aspects of the phono-
graphic neighborhood of a particular target word. Recall that
degree simply refers to the number of phonographic neighbors,
whereas clustering coefficient refers to the extent to which pho-
nographic neighbors are also phonographic neighbors of each
other.

One possible explanation for the observed finding that phono-
graphic degree facilitated visual word recognition (but not spoken
word recognition) and phonographic C facilitated spoken word
recognition (but not visual word recognition) is that similarity
effects depend on, and reflect, differences in the nature of “bottom-
up” auditory and visual information. Visual information is instan-
taneous and immediately available, whereas acoustic information
unfolds over time and is more ambiguous. Because of the nature of
auditory information, there is more time for activation to spread
among a target word’s neighbors, allowing for subtle similarity
effects as measured by C to “emerge”, and diminishing the influ-
ence of partially activated neighbors (as captured by degree) in
spoken word recognition.

Consider the following study by Seidenberg, Waters, Barnes,
and Tanenhaus (1984), who found that words with irregular pro-
nunciations were named more slowly than words with regular
pronunciations, but this was only true for low frequency words and
not high frequency words (Andrews, 1982). High frequency irreg-
ular words (e.g., “have”) were named just as quickly as frequency-
matched regular words. According to Seidenberg (1985), in visual
word recognition, orthographic and phonological information are
activated at different latencies within a single interactive process,
with phonology lagging behind orthography. As it takes a longer
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time to recognize low frequency words, it allows more time for
phonological information (i.e., irregular pronunciations) to be ac-
tivated and hence influence naming latencies.

The general argument from the above study is that when pro-
cessing is difficult or effortful in some way (such as low frequency
words), it permits more time for additional influences (such as
phonology) to come into play. A variant of this argument could be
applied to explain the present set of findings: Processing spoken
words, which are more ambiguous than written words due to the
nature of auditory input, may permit more time for more subtle
similarity effects such as C to develop and subsequently affect
recognition. In other words, ambiguity in the bottom up signal may
lead to greater sensitivity to nuances in the similarity space.
Although these explanations are somewhat speculative in nature,
they could be tested and investigated in future experimental work
and computer simulations (e.g., Chen & Mirman, 2012; Vitevitch
et al., 2011).

Theoretical Implications for Models of Word
Recognition

Several well-established theories have been put forth to account
for multiple aspects of visual and spoken word recognition. The
leading models of visual word recognition can be broadly classi-
fied into two groups: dual route models, which posit the presence
of two distinct, independent pathways in visual word recognition
(e.g., Coltheart, Rastle, Perry, Langdon, & Ziegler’s, 2001 dual
route cascaded model) and parallel, distributed models, which
consist of orthographic units, phonological units, and a set of
hidden units that interface between the orthographic and phono-
logical units (e.g., Seidenberg & McClelland’s, 1989 parallel dis-
tributed processing [PDP] model). The cohort model (Marslen-
Wilson, 1987), TRACE (McClelland & Elman, 1986), Shortlist B
(Norris & McQueen, 2008), and neighborhood activation model
(Luce & Pisoni, 1998) represent the prominent models of spoken
word recognition.

For the purposes of the present discussion, we will focus on the
Seidenberg and McClelland (1989) PDP model of visual word
recognition and pronunciation as an example, and consider how it
may or may not be able to account for the phonographic effects
observed in the present studies.

The PDP model consists of orthographic units, phonological
units, and a set of hidden units that interface between the ortho-
graphic and phonological units. One key feature of distributed
models is the ability of the model to learn—and thereby approx-
imate the language acquisition process in children—by modifying
connection weights between units via a back-propagation learning
algorithm during training (Seidenberg & McClelland, 1989). In a
connectionist model, the relative influence of orthography and
phonology on lexical retrieval depends on the extent to which
orthographic and phonological codes overlap (Harm & Seiden-
berg, 2004). A greater amount of overlap in orthography and
phonology would be expected to speed up processing and lead to
faster access to a word’s meaning (Harm & Seidenberg, 2004); this
is consistent with the present finding that phonographic similarity
generally facilitates processing in both visual and spoken word
recognition. However, without explicitly considering the linguistic
structure of language, it is not entirely clear how more subtle
effects of the phonographic similarity structure (i.e., the level of

interconnectivity among similar words, as exemplified by the
phonographic C metric) would be implemented in the model.

It is important to emphasize that although the architecture of the
PDP model may seem to resemble a network of sorts (i.e., units
connected to each other; see Figure 3), it differs considerably from the
language network generated via the network science approach. In the
PDP model, all units are connected to all other units, with connection
weights that update after training. The model is distributed, such that
phonological or orthographic codes are represented by a pattern of
activation distributed over primitive orthographic, phonological, and
hidden units (Seidenberg & McClelland, 1989). In contrast, the net-
work science approach explicitly models the overall similarity struc-
ture of language. Nodes represent lexical forms and unweighted links
are placed between similar word forms as defined by a straightfor-
ward operationalization of similarity (substitution, addition, deletion
of one phoneme or letter; Landauer & Streeter, 1973; see Figure 4).

The network science approach, despite being based on simple
assumptions, reveals a complex language network structure
whereby a simple diffusion of activation mechanism can be im-
plemented to account for behavioral findings such as the clustering
coefficient effect (Vitevitch et al., 2011). Simulations conducted
by Chan and Vitevitch (2009) using jTRACE, the computational
implementation of the TRACE model of speech perception
(Strauss, Harris, & Magnuson, 2007), were unable to account for
the clustering coefficient effect. In contrast, a model that imple-
mented a simple diffusion of activation process on a network
structure (Vitevitch et al., 2011) was able to simulate the inhibitory
C effect in spoken word recognition. Furthermore, even though
sublexical units (such as letters or phonemes) are not explicitly
represented as individual nodes or entities within the language
network, one could potentially account for both lexical and sub-
lexical effects by examining the language network at differing
levels of the network (micro-, meso-, macro-). For instance, Siew
(2013) speculated that (sublexical) phonotactic probability effects
could emerge at the mesolevel (community) structure of the net-
work and (lexical) neighborhood density effects could arise at the
microlevel of the network.

As the above discussion demonstrates, the network science
approach differs from contemporary approaches in psycholinguis-

Figure 3. The general framework of the Parallel Distributed Processing
model (Seidenberg & McClelland, 1989). Each ellipse represents a set of
primitive units, with grey ellipses representing hidden units.
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tics. The former approach emphasizes the role of the underlying
language structure on lexical retrieval whereas the latter focuses on
investigating the cognitive processes that underlie lexical retrieval.
Similarly, the measures investigated in this paper, phonographic
degree and phonographic C, are derived directly from the phono-
graphic language network and represent the structural characteris-
tics of words in that network. In addition, the network science
framework provides language researchers with the tools to mea-
sure and quantify various structural aspects of the phonographic
network that was introduced in this article. For instance, one can
examine the global structural properties of words in the phono-
graphic network by using the closeness centrality network measure
(see Goldstein & Vitevitch, 2017, who examined the influence of
phonological closeness centrality on spoken word recognition), or
examine the mesolevel structure (i.e., communities or clusters) of
words in the phonographic network (see Siew, 2013, for an exam-
ple of how community detection techniques were used to analyze
the phonological language network). Adopting a network science
framework would not only lead to the development of new net-
work metrics that can help move the field toward a more integrated
understanding of phonological effects on visual word recognition

and orthographic effects on spoken word recognition, but also
provide additional empirical findings that can further constrain and
test current models of lexical retrieval in both the spoken and
written modalities.

Without explicitly considering how the overall phonological and
orthographic similarity structure of language affects lexical re-
trieval, it is unclear how current models of word recognition would
be able to account for the present findings. In addition, models of
spoken word recognition (e.g., Cohort, TRACE, Shortlist, neigh-
borhood activation models) do not consider the role of ortho-
graphic information on speech processing and would not predict
any orthographic effects in spoken word recognition in the first
place. Unlike the above models of lexical retrieval, which tend to
focus on the process of lexical retrieval, the network science
approach emphasizes the importance of explicitly considering the
structure of the system in which lexical processes operate on and
provides a mathematical framework for quantifying and measuring
the structure of the lexicon. Indeed, a simple process like a random
walk implemented on a structured semantic network has been able
to produce retrieval patterns from memory that resemble the re-
trieval patterns produced by a more complex and strategic algo-
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Figure 4. A section of the phonological network of language showing the word “speech”, its phonological
neighbors, and the phonological neighbors of its phonological neighbors. Links are placed between words that
differ by the substitution, addition, or deletion of one phoneme.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

495PHONOGRAPHIC NETWORK OF LANGUAGE



rithm for optimal foraging (Abbott, Austerweil, & Griffiths, 2015),
as well as the well-known meaning-frequency law (Ferrer-i-
Cancho & Vitevitch, 2018) and word frequency law discovered by
Zipf (Allegrini, Grigolini, & Palatella, 2004). Through the present
article, we hope to shift, or at least tilt, the overwhelming focus of
these models on processing to one that simultaneously considers
how process and structure work in tandem to produce behavioral
phenomena.

Finally, it is important to acknowledge that there is still much to
done. In the present article, the analyses were conducted on a
subset of shorter, more frequent words in the English language and
it is crucial for future empirical work to investigate how the
structure of the phonographic multiplex at various levels (macro-,
meso-, micro-) influence processing and begin examining other
areas of the multiplex beyond the phonographic network that
would include longer, less frequent, multisyllabic words that are
not found in the giant component of the phonographic network.
Future computational simulations will also need to be conducted to
formalize and test models to provide computational support for the
present findings of an effect of phonographic degree on visual
word recognition and an effect of phonographic clustering coeffi-
cient on spoken word recognition. Nevertheless, the present find-
ings suggest that models of word recognition will need to explic-
itly consider how the cognitive processes that underlie lexical
retrieval operate within a complex language structure as repre-
sented by the phonographic multiplex.
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Appendix A

List of Word Stimuli Used in Experiments 1 and 2

Phonographic degree words Phonographic C words

High degree Low degree High C Low C

bloat balm balk bleed
brace blame bland blob
brew blow bleak bread
chart brood blown brink
clip brook boss broom
deck charm bride cave
draft chase clot clod
drag clean count drive
drew cleat crime drove
drip clove dream duct
flake clump drown flat
flew cue duke hack
flick doom dwell hawk
float dorm flip hive
flush dread flop hoop
gripe drum haze lab
gum fled hook lobe
gust food husk mile
hulk grab loaf moat
hurl halt lunch mount
loud hurt lung nose
moist limb mean pluck
mood plea paid plum
pleat porch posh plume
scoop range pulp raft
shame roof pump ramp
shock scab rack ripe
slid scan reef rose
slum scorn rope run
slump sheep save side
spool short skin slap
spunk shout slam slur
stall smack snip snap
steep spear spice space
stub stark stock swell
swim start tab tomb
swing swap tile tool
swoop sweep tote trail
trust wand trace tread
weep yarn truce wheat

(Appendices continue)
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Appendix B

List of Nonword Stimuli Used in Experiment 2

Nonword foils for phonographic degree words Nonword foils for phonographic C words

bles bim blik blaid
blet blε bl�n bɹɑb
bɹε blυk blund bɹɔim
tʃeɹt bɹem blaid bɹ�d
dɔk bɹid bɔik bɹ�ŋk
dɹεft tʃis bos dɑkt
dɹig tʃoɹm dek dɹɑv
dɹop dɔim dɹom dɹεv
dɹaυ dɹem dɹain flet
floʃ dɹ�d dwɑl hik
flυk dυɹm flup hok
fl�t flud fɹɑp hov
flik fυd hɑsk hυp
fɹu glæb hɑz hwɑt
gæm hεt hek kεv
gɑst hilt klυt kɹɑd
gɹ�p klɔimp kɔint lεb
hɔil klut kɹaυm lυb
holk klυv lɑŋ mont
klup kɹin lef mɔit
l�d kjɑ lυntʃ maυl
m�d lom mɔn niz
mυst piɹtʃ pɑmp plεm
plut plυ peʃ pɹum
ʃem ɹæf pilp pɹ�k
skɔip ɹin� pɔid ɹemp
slimp ʃɑɹt ɹof ɹin
slom skib ɹuk ɹiz
slaυd skυn ɹaυp ɹoft
ʃok sloɹn skɔin ɹυp
spæl smεk slɑk sles
spiŋk ʃɔit slem slɔi
sp�b spaυɹ snop sn�p
stop steɹt sov stɑp
stυl stiɹk spos stεl
swɔŋ ʃup tεt saυd
sw�p sw�p tib tεb
swum sw�p tɹɑs tɹεl
tɹɔist wɔind tɹis tɹ�d
wæp joɹn t�l t�l
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