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Abstract

Network science provides a new way to look at old questions in cognitive science by examining
the structure of a complex system, and how that structure might influence processing. In the context
of psycholinguistics, clustering coefficient—a common measure in network science—refers to the
extent to which phonological neighbors of a target word are also neighbors of each other. The
influence of the clustering coefficient on spoken word production was examined in a corpus of
speech errors and a picture-naming task. Speech errors tended to occur in words with many inter-
connected neighbors (i.e., higher clustering coefficient). Also, pictures representing words with many
interconnected neighbors (i.e., high clustering coefficient) were named more slowly than pictures
representing words with few interconnected neighbors (i.e., low clustering coefficient). These
findings suggest that the structure of the lexicon influences the process of lexical access during
spoken word production.

Keywords: Computer Science; Linguistics; Psychology; Cognitive Architecture; Complex Systems;
Memory

Networks, or systems comprised of interconnected components, have a long and varied
history in cognitive science, exemplified in the pioneering work of Rosenblatt (1958) on
artificial neural networks, and of Quillian (1967) on semantic networks. The general princi-
ples of cognition that emerged from those examples have influenced in some way all areas
of cognitive science. Recent developments in mathematics, physics, computer science, and
other fields have sparked a ‘‘new’” science of networks with computational tools that allow
researchers to examine the structure of complex systems and explore how that structure
might influence processing (Watts, 2004; see also Jasny, Zahn, & Marshall, 2009). Using
this approach, words in the mental lexicon can be represented as nodes in a network with
links connecting words that are related to each other in some way (see Albert & Barabasi,
2002 for examples of how such networks have been used to model social, biological, and
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technological systems). In the present study we examined how the structure of a network
representing the phonological similarity among word-forms in the mental lexicon—a com-
plex cognitive system—might influence the process of speech production (Vitevitch, 2008;
such networks have also been used to model semantic relationships among words: Hills,
Maouene, Maouene, Sheya, & Smith, 2009; Steyvers & Tenenbaum, 2005).

There are a number of standard measurements used to describe the structure of a network,
but the two measurements most relevant to the present study are degree and clustering
coefficient. Degree refers to the number of links that a node has. In the network of phono-
logical word-forms in the mental lexicon (Vitevitch, 2008), degree corresponds to the
number of word-forms that sound similar to a given word. In the psycholinguistic literature,
this measure is referred to as phonological neighborhood density (Luce & Pisoni, 1998), but
we will use the term degree to maintain consistency with the network perspective that
motivated the present study. Much psycholinguistic research has demonstrated that degree
influences spoken word production (e.g., Goldrick & Rapp, 2007; Kittredge, Dell, Verkuilen,
& Schwartz, 2008), spoken word recognition (e.g., Luce & Pisoni, 1998), word-learning
(e.g., Storkel, Armbruster, & Hogan, 2006), and other language-related processes (e.g.,
Roodenrys, Hulme, Lethbridge, Hinton, & Nimmo, 2002; Yates, Locker, & Simpson,
2004). Network simulations have also demonstrated that the degree of a node is a good
indicator of how important a given node is with regards to information retrieval and
navigation within that system (Simsek & Jensen, 2008; see also Griffiths, Steyvers, & Firl,
2007 and Chan & Vitevitch, 2009 for descriptions of similar search mechanisms in the lexi-
con). Given the robust influence of degree (a.k.a. phonological neighborhood density) on
language processing, the present study examined how similarity among the neighbors,
a measure referred to in network science terms as the clustering coefficient, C (Watts &
Strogatz, 1998), affects the production of a spoken word.

Note that degree and C are two different measures.' Fig. 1 shows the words badge and log
as well as the neighbors of each word. Both words have 13 phonological neighbors and thus
the same degree. Notice that bag, bad, bat, back, ban, and batch are not only neighbors of
the word badge but are also neighbors of each other. Clustering coefficient (in a network of
word-forms) measures the extent to which phonological neighbors are also neighbors of each
other. A word (like badge) with a large number of neighbors also being neighbors of each
other is said to have a high C, whereas a word (like log) with an equal number of neighbors
but a smaller number of neighbors also being neighbors of each other is said to have a low C.

Chan and Vitevitch (2009) found in a perceptual identification task, where auditorily pre-
sented words are mixed with white noise and participants must indicate the word they heard,
and in an auditory lexical decision task, where participants decide if what they heard was an
English word or not, that words with low C were responded to more quickly and accurately
than words with high C. These results suggest that the structure of the lexical network
affects the process of spoken word recognition. Words with low C have neighbors that tend
to be related to other words elsewhere in the network. This relationship results in activation
being broadly dispersed to the rest of the network, allowing the target word to ‘‘stand out™’
from its closest competitors. In contrast, words with high C have neighbors that tend to be
related to other neighbors of the target word. This relationship results in the activation being
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Fig. 1. The left panel represents a word with a high clustering coefficient (badge; C = .58), whereas the right
panel represents a word with a low clustering coefficient (log; C = .28). Note that both words have the same
degree (i.e., number of phonological neighbors).

constrained to a more restricted region of the network, creating a ‘‘reservoir of activation’’
among the neighbors, and making it difficult to distinguish the target word from the neigh-
bors.”

In the present study, we examined how the dispersal or reservoir of activation found
among words varying in C might influence the process of spoken word production. It is
important to examine the influence of C on the production of spoken words in addition to
the recognition of spoken words because different effects of degree (i.e., neighborhood
density) have been observed in the two processes (cf., in English: Luce & Pisoni, 1998;
Vitevitch, 2002; cf., in Spanish: Vitevitch & Rodriguez, 2005; Vitevitch & Stamer, 2006,
2009), suggesting that the same structure may have different influences on processing during
perception versus production.

During speech production, the intended message activates a target word-form that corre-
sponds to the semantic information to be conveyed. In addition to the target word-form being
activated, phonologically related words are also activated via the phonological segments that
are shared with the target word (see Gordon & Dell, 2001; Vitevitch, 2002).3 For words with
low C, the neighbors not only send some activation back to the target word and to the (few)
neighbors they are similar to, but they also send activation to other words in the network.
With activation spreading to other parts of the network, many representations will become
slightly activated, but only one item—the target word—will be highly activated as a result of
receiving activation from its phonological neighbors and from higherlevel representations
(e.g., semantic information). With only the target word being highly activated, retrieval of
that item from the lexicon and production of that word will be rapid and efficient.

As in the case of a word with low C, the intended message will activate the target word-
form of a word with high C, and the target word-form will activate phonologically related
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words. The activated neighbors will spread activation back to the target word and to other
words in the network. However, in the case of a word with high C, the neighbors spread
activation among the other phonologically related neighbors of the target word to a greater
extent than for a word with low C. With the spread of activation reverberating among the
neighbors—essentially containing activation within the phonological neighborhood—the
target word will no longer ‘‘stand out’” from the neighbors as it did in the case of a word
with low C, making it difficult to retrieve an item from the lexicon quickly and without
error. The present study examined these predictions in a corpus of speech production errors
and a picture-naming task.

1. Speech error analysis

Fromkin (1971) demonstrated that the analysis of various types of speech errors from a
linguistic perspective could provide important insight into the process of speech production.
One type of speech error is the malapropism, in which a whole word that is phonologically
but not semantically related is substituted for another word, such as saying octane instead of
octave in a conversation about music. A previous analysis of malapropisms (Vitevitch,
1997) found that, compared to randomly sampled words of comparable length and syntactic
class, the intended (but erroneously produced) words tended to have low degree (i.e., sparse
neighborhoods), suggesting that during speech production such words were more difficult to
retrieve than words with high degree (i.e., dense neighborhoods; also see Vitevitch, 2002;
Vitevitch & Sommers, 2003).

In the present analysis, we compared the clustering coefficient of 40 malapropisms (i.e.,
the monosyllabic words from the appendix of Fay & Cutler, 1977) to the clustering coeffi-
cient of 10 random samples of 40 words of comparable length and syntactic class (as in
Vitevitch, 1997). We predicted that malapropisms would have higher clustering coefficients
than randomly sampled words of comparable length and syntactic class if the structure of
the lexicon influences speech production. As shown in Table 1, the results confirmed this

Table 1

Mean clustering coefficient (and standard deviation)
of the malapropisms and 10 randomly sampled sets of
words of comparable length and syntactic class

Malapropism 0.316 (0.122)
Sample 1 0.254 (0.145)
Sample 2 0.260 (0.118)
Sample 3 0.235 (0.139)
Sample 4 0.291 (0.145)
Sample 5 0.261 (0.138)
Sample 6 0.276 (0.157)
Sample 7 0.285 (0.124)
Sample 8 0.210 (0.146)
Sample 9 0.248 (0.150)

Sample 10 0.253 (0.106)
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prediction: Malapropisms did indeed have higher clustering coefficients than randomly
sampled words of comparable length and syntactic class [F(10, 429) = 2.00, p = .03],
suggesting that it is more difficult to retrieve words with high rather than low clustering
coefficient.

An alternative analysis comparing the malapropisms to the randomly sampled words (this
time treating the randomly sampled words as one large sample) also shows that the
malapropisms have higher clustering coefficients than the randomly sampled words
[F(1, 438) = 6.80, p = .0094]. Because of the difficulty in lexical retrieval as a function of
clustering coefficient, speakers are more likely to make a speech error on a word with high
rather than low clustering coefficient.

2. Picture naming experiment

Although much has been learned from analyses of speech errors, and several models of
speech production account for speech error data (e.g., Dell, 1986, 1988), Levelt, Roelofs,
and Meyer (1999) have argued that:

Models of lexical access have always been conceived as process models of normal speech
production. Their ultimate test...cannot lie in how they account for infrequent derailments
of the process but rather must lie in how they deal with the normal process itself. RT
studies, of object naming in particular, can bring us much closer to this ideal...[becau-
se]...object naming is a normal, everyday activity...[and]...reaction time measurement is
still an ideal procedure for analyzing the time course of a mental process...(p. 2)

To further assess how C influences the process of speech production, we used an object-
naming task (a.k.a. picture-naming task; Oldfield & Wingfield, 1965).

3. Method
3.1. Participants

Thirty native English speakers were recruited from the pool of Introductory Psychology
students at the University of Kansas. Participants received credit towards the completion of
a course requirement. All participants were right-handed with no reported history of speech
or hearing disorders.

3.2. Materials
Black-and-white line drawings, like those from Snodgrass and Vanderwart (1980), for 56

English monosyllabic nouns consisting of a consonant-vowel-consonant structure were used
as stimuli in this experiment (these words are listed in the Appendix, and an example of one
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Fig. 2. The black-and-white line drawing depicting the stimulus word mouse.

of the images used in the experiment appears in Fig. 2). Half of the line drawings illustrated
words with high C and the other half illustrated words with low C. In each condition, equal
numbers of words contained the same initial phoneme.

Clustering coefficient for each stimulus was obtained by using the Pajek computer pro-
gram (Batagelj & Mrvar, 1988) to analyze the 19,340 lexical entries in Nusbaum, Pisoni,
and Davis (1984). The clustering coefficient is the ratio of the actual number of links exist-
ing among neighbors of the target word to the number of all possible links among neighbors
if every neighbor was connected (Batagelj & Mrvar, 1988). C has a range from 0 to 1. When
C = 0, none of the neighbors of a target node are neighbors of each other. When C = 1, the
network is fully interconnected, meaning every neighbor is also a neighbor of all the other
neighbors of a target word. Words with high C had a mean value of 0.342 (SEM = 0.012)
and words with a low C had a mean value of 0.277 (SEM = 0.010). The difference between
the two groups of stimuli was statistically significant [F(1, 54) = 17.13, p < .0001].

Although the two sets of words differed significantly in C, the words were equivalent in
subjective familiarity, word frequency, degree (i.e., neighborhood density), neighborhood
frequency, phonotactic probability, and a number of other variables. Below we provide a
description of each lexical characteristic. Table 2 contains the mean and standard error of
the mean for each lexical characteristic.

Subjective familiarity was measured on a seven-point scale (Nusbaum et al., 1984); all
the stimuli were highly familiar words. Word frequency refers to the average occurrence of
a word in the language (Baayen et al., 1996; Kucera & Francis, 1967). Degree (a.k.a. neigh-
borhood density) refers to the number of words that are similar to a target on the basis of the
substitution, deletion, or addition of a single phoneme in any position of the target item
(Luce & Pisoni, 1998). Neighborhood frequency is defined as the mean word frequency of
the neighbors of the target word (Luce & Pisoni, 1998). Phonotactic probability was mea-
sured by assessing how often a certain segment occurs in a certain position in a word (posi-
tional segment frequency) and how often two segments occur next to each other in a certain
position in a word (biphone frequency) using the Phonotactic Probability Calculator avail-
able via the Internet (Vitevitch & Luce, 2004).

Spread of the neighborhood (P) refers to the number of phoneme positions in a word that
form a neighbor (Vitevitch, 2007). For example, when a single phoneme is substituted into
the word mob, phonological neighbors are formed in only two phoneme-positions (e.g., rob,
mock); no real word in English is formed when a single phoneme is substituted in the medial
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Table 2

Mean (and standard error of the mean) for various lexical characteristics of the stimuli

Lexical Characteristic High C Low C
Familiarity 6.97 (.013) 6.98 (0.011)
Frequency of occurrence (K&F logyg) 1.19 (0.02) 1.34 (0.01)
Frequency of occurrence (CELEX) 0.827 (0.111) 0.961 (0.090)
Degree 19.93 (1.34) 20.96 (1.53)
Neighborhood frequency (log) 1.04 (0.040) 0.99 (0.034)
PP positional segment frequency 0.157 (0.001) 0.150 (0.001)
PP biphone frequency 0.005 (0.0001) 0.006 (0.0001)
Spread 2.82 (0.104) 2.93 (0.050)
N; 355@3.1) 37.5(2.9)
Nm 28.8 (3.1) 27.5(3.0)
N¢ 35.7 (4.2) 349 (3.1)
Imageability 590 (8.8) 573 (13.8)
Concreteness 591 (6.0) 593 (5.9)
Picture-name rating 6.42 (0.073) 6.36 (0.104)
Polysemy 6.82 (0.997) 7.11 (0.647)
Hypernymy 8.61 (0.598) 8.64 (0.464)

Notes. None of the differences between groups were statistically significant (all p > .05). Log transformed
values were used to reduce the skew typically observed in distributions of word frequency.

PP, phonotactic probability; V;, percentage of neighbors formed by a substitution in the initial position; Ny,
percentage of neighbors formed by a substitution in the medial position; Ng, percentage of neighbors formed by
a substitution in the final position.

position of the word mob, giving mob a spread of 2. Spread was assessed using N-Watch
(Davis, 2005). We also used N-Watch to assess the percentage of neighbors formed in each
phoneme position in each word (N;, N,,, Ny in Table 2).

Picture-name agreement was assessed by a separate group of 20 undergraduate students
at the University of Kansas who rated the picture-word pairs on a scale from 1 (the word
does not describe the picture well) to 7 (the word describes the picture well). Previous stud-
ies have shown that pictures of living objects are named more quickly and accurately than
pictures of nonliving objects (e.g., Takarae & Levin, 2001). For the high C condition, there
were nine living objects and 19 nonliving objects. For the low C condition, there were 13
living objects and 15 nonliving objects. A two-way chi-square analysis showed that there
was no difference between the two conditions with regard to the number of living and
nonliving objects, %*(1, n = 56) = 1.20, p > .05. The words were also comparable with
regards to imageability, concreteness ratings (obtained from Coltheart, 1981), polysemy,
and hypernymy (obtained from WordNet; Fellbaum, 1998).

Finally, another group of 23 undergraduate students at the University of Kansas took part
in an object decision task. In this task, participants decided if the picture they saw was a real
object or a nonobject (56 nonobjects were randomly selected from Kroll & Potter, 1984).
This task allowed us to assess the potential influence that other factors related to the images
themselves (e.g., object complexity, living vs. nonliving, etc.) might have on processing.
The average reaction time for pictures with high and low C were 598 ms (SD = 75.71)



692 K. Y. Chan, M. S. Vitevitch/Cognitive Science 34 (2010)

and 593 (SD = 73.03) respectively. This difference was not statistically significant
[F(1, 22) < 1] and raises doubts that visual or semantic properties of the pictures could
account for the differences observed in the picture-naming task.

3.3. Procedure

For the picture-naming task, participants studied a booklet that, on each page, contained
a stimulus picture presented centrally along with its identifying name below it. This proce-
dure familiarized the participants with the pictures and their names so as to minimize poten-
tial recency effects (i.e., participants respond differently to words as a function of the last
time the words were retrieved; Burke, MacKay, Worthley, & Wade, 1991). When partici-
pants were confident that they could identify each picture with the given label, they were
seated in front of an iMac computer running PsyScope 1.2.5, which controlled the randomi-
zation and presentation of stimuli, and collected response latencies. Participants used a
headphone-mounted microphone (Beyerdynamic DT 109) interfaced to a New Micros
response box, which acted as a voice-keyed switch to terminate a timer with millisecond
accuracy.

In each trial, the word ‘“‘READY’’ appeared on the computer screen for 500 ms. The par-
ticipants were then presented with a randomly selected stimulus picture that remained visi-
ble until a verbal response was detected. The participants were instructed to name the
picture as quickly and accurately as possible using the designated picture name (N.B.,
the word did not appear on the screen). Reaction times were measured from the onset of the
stimulus to the onset of the participant’s verbal response. Another trial began 1 s after a
response was made. The verbal responses were also recorded to aid in the assessment of
accuracy. No picture was presented more than once. Prior to the experimental trials, each
participant received five practice trials to become familiar with the task. These practice trials
were not included in the data analyses.

4. Results and discussion

The recorded responses of each participant were scored for accuracy by a trained
researcher. Only accurate responses were included in the analysis. Responses other than the
given label (e.g., responding with ‘‘rat’’ instead of ‘‘mouse’’) were counted as errors. Reac-
tion times that were more extreme than two standard deviations from the mean were consid-
ered outliers and were excluded from the analysis (accounting for less than 2% of the
responses). Responses that triggered the voice-key improperly (e.g., coughing, ‘‘uh’’) were
not included in the analyses (accounting for less than 1% of the responses).

Participants were highly accurate in naming the pictures. The mean accuracy rate for the
high C condition was 93% (SD = 0.059) and the mean accuracy rate for the low C condition
was 94% (SD = 0.064); this difference was not statistically significant [F(1, 29) < 1].

However, participants named words with high C (M =772 ms, SD = 115.07) more
slowly than words with low C (M = 739 ms, SD = 94.77; F(1, 29) = 14.09, p = .001;
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F>5(1, 54) =2.58, p = .11).° Although the observed difference is considered a small effect
(d = .313), it has a high probability of being replicated (p,, = .986; Killeen, 2005) and is in
the predicted direction (in the subject and item analyses): Words with high C were named
more slowly than words with low C. Consistent with the speech-error analysis, the result of
the picture-naming task also suggests that it is more difficult to retrieve words with high
rather than low clustering coefficient.

Taken together, the results from the speech-error analysis and the picture-naming task
suggest that the structure of the lexical network—as measured by C—influences the cogni-
tive processes associated with spoken word production (for influences in spoken word rec-
ognition see Chan & Vitevitch, 2009). Regions of the lexical network with high C create
reservoirs of activation among similar sounding word-forms. With activation concentrated
in a handful of similar sounding words, selection of the target word-form becomes more dif-
ficult. In contrast, regions with low C disperse activation to a wider region of the network,
allowing the target word to ‘‘stand out’ from the other candidates, making the process of
lexical retrieval rapid and accurate.’

Observing such effects in the cognitive domain of language processing further expands
the scope of the ‘‘new’’ science of networks (Watts, 2004). By continuing to examine other
aspects of lexical structure—through experiments, corpus analyses, network analyses, and
other approaches—we can better understand the structure of the lexicon, and how that struc-
ture may influence various aspects of spoken language processing. Just as previous versions
of the network metaphor have reshaped and advanced our understanding of various psycho-
logical processes in significant ways, the current version of the network metaphor in the
form of network science may have much to offer cognitive and neural sciences (e.g., Ferrer
i Cancho & Sole, 2001; Sporns, Chialvo, Kaiser, & Hilgetag, 2004).

Notes

1. Degree and C are not only different measures by definition, but empirically these
measures are independent of each other. The correlation between degree and C for the
6,281 words with two or more neighbors (the minimum number of neighbors required
to compute C) from the lexical network in Vitevitch (2008) is r = .005, p = .68.

2. As described in Chan and Vitevitch (2009) this pattern of results is also consistent
with the hypothesis that lexical retrieval can be construed as a search through a lexical
network in addition to the account based on spreading activation. Although
experiments measuring lexical processing may not be able to distinguish between the
two accounts, the structural analyses of Vitevitch (2008) and Arbesman, Strogatz, and
Vitevitch (in press) favor the hypothesis that lexical retrieval might be better viewed
as a search through a lexical network.

3. See Goldrick (2006) for a review of the difficulties that strictly feed-forward models
of speech production have in accounting for the influence of phonological neighbors
on the speed and accuracy of producing spoken words.
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4. For a discussion of ‘‘items analyses’’ see Baayen (2004), Cohen (1976), Keppel
(1976), Raaijmakers, Schrijnemakers, and Gremmen (1999), Smith (1976), and Wike
and Church (1976) among others.

5. It is possible that reservoirs of activation might have a different influence later in
processing, or in a different cognitive process. For example, Vitevitch, Chan, and
Roodenrys (2009) found that lists comprised of words with high C were recalled more
accurately than lists comprised of words with low C in a serial recall task, suggesting that
reservoirs of activation may benefit the reconstructive memory process of reintegration.
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Appendix

List of the stimulus items used in the picture-naming experiment

High C Low C
Badge Bat
Bun Bed
Bib Beach
Book Bush
Bull Boot
Doll Duck
Gun Goat
Keg Cat

Cake Cup
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Appendix: (Continued)

Cane Cape
Cave Kid
Coin King
Cook Couch
Lawn Lung
Mop Mouse
Pig Palm
Pin Pen
Pool Pearl
Pipe Purse
Wreath Rope
Rose Rice
Seal Soap
Sheep Sheet
Tail Tongue
Teeth Tire
Web Watch
Witch Wedge

Wine Wing
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