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Using Network Science Measures to
Predict the Lexical Decision Performance

of Adults Who Stutter
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Purpose: Methods from network science have examined
various aspects of language processing. Clinical
populations may also benefit from these novel analyses.
Phonological and lexical factors have been examined in
adults who stutter (AWS) as potential contributing factors
to stuttering, although differences reported are often
subtle. We reexamined the performance of AWS and adults
who do not stutter (AWNS) from a previously conducted
lexical decision task in an attempt to determine if network
science measures would provide additional insight into
the phonological network of AWS beyond traditional
psycholinguistic measures.
Method: Multiple regression was used to examine the
influence of several traditional psycholinguistic measures
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as well as several new measures from network science on
response times.
Results: AWS responded to low-frequency words more
slowly than AWNS; responses for both groups were
equivalent for high-frequency words. AWS responded to
shorter words more slowly than AWNS, producing a reverse
word-length effect. For the network measures, degree/
neighborhood density and closeness centrality, but not
whether a word was inside or outside the giant component,
influenced response times similarly between groups.
Conclusions: Network analyses suggest that multiple levels
of the phonological network might influence phonological
processing, not just the micro-level traditionally considered
by mainstream psycholinguistics.
Network science is an emerging discipline that
draws on techniques developed in mathematics,
sociology, computer science, physics, and other

fields to examine complex systems. A network consists of
nodes, which are used to represent an individual entity in
the network, and connections, which are placed between
related nodes. Fundamental to the network science approach
is the assumption that the structure of a network influences
the dynamics of that network (Watts & Strogatz, 1998). That
is, a process might operate efficiently in a network that is
structured in one way; however, the same process may oper-
ate less efficiently in another network that contains the same
number of nodes and connections but is structured differ-
ently. Therefore, understanding the structure of a network,
such as a network representing the mental lexicon, is critical
to understanding how a cognitive process, such as language
production, occurs.
The network approach has been used to examine
questions in biology, sociology, and technology (Barabási,
2009). In the speech and language sciences, network science
has been used to examine semantic representations of
words in children with language delays (Beckage, Smith,
& Hills, 2011) as well as typically developing children
(Hills, Maouene, Maouene, Sheya, & Smith, 2009) and adults
(Steyvers & Tenenbaum, 2005). It has also been used to
examine the phonological representations of people with
aphasia (Vitevitch & Castro, 2015), as well as the language
processes of word recognition (Chan & Vitevitch, 2009;
Luce & Pisoni, 1998; Vitevitch & Luce, 1998, 1999; Vitevitch
& Rodriguez, 2005), word production (Chan & Vitevitch,
2010; Vitevitch, 1997, 2002; Vitevitch & Stamer, 2006), word
learning (Goldstein & Vitevitch, 2014; Storkel, 2004), and
language-related memory processes (Vitevitch, Chan, &
Roodenrys, 2012). The network approach has also been
used to examine the symptoms of stuttering (Siew, Pelczarski,
Yaruss, & Vitevitch, 2017).

In addition to understanding the organization and
efficiency of typical speech and language systems, network
science may provide even more benefit in the exploration
of speech and language systems in clinical populations
such as stuttering. The remainder of this article will focus
Disclosure: The authors have declared that no competing interests existed at the time
of publication.
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on the phonological network of adults who stutter (AWS)
and describe some ways network science can be applied to
clinical populations.
The Phonological Network
Vitevitch (2008) used the tools of network science to

examine the mental lexicon by creating a network consisting
of ~20,000 English words as nodes and placing undirected
and unweighted connections between those words that were
phonologically similar. Phonological similarity was defined
by adding, substituting, or deleting a single phoneme in a
word to create another word (Luce & Pisoni, 1998). For
example, the nodes for cat /kæt/ and bat /bæt/ would be
connected because of the substitution of one phoneme (the
underlined phoneme indicates where the changed phoneme
occurred). A small portion of the network is displayed in
Figure 1.

A number of measures can be made at various levels
of the network that have important implications for lexical
processing (see Appendix A). For a review of network mea-
sures examined in the phonological network, see Vitevitch,
Goldstein, Siew, and Castro (2014). Some network science
measures assess the macro-level, or aspects of the whole
network, whereas other measures assess the micro-level,
or aspects of individual nodes in the network. An example
of a measure of the whole network is the observation of
Vitevitch (2008), who found that the approximately 20,000
nodes within the phonological network resided in one of
three locations: the giant component, in one of many possi-
ble smaller components called islands, or as an isolated
hermit. The giant component consisted of a large group of
nodes (n = 6,508) that were highly connected to each other.
Another 2,567 nodes resided in islands in the network,
which consisted of smaller groupings of nodes that were
connected to each other, but not to the giant component.
For example, Vitevitch (2008) described the “island of the
shunned,” because all words in that island contained the
sequence of segments /ʃʌn/, such as faction, fiction, and fission.
Lastly, hermits (n = 10,265) were those nodes in the network
that were not connected to any other node in the network
(e.g., spinach).

An example of a measure that assesses individual
nodes in the network is degree. Degree refers to the num-
ber of connections that a node has. In the phonological
Figure 1. A small portion of the phonological network examined by
Vitevitch (2008).
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network, this measure refers to the number of words that
sound like the target word (as defined by the one-phoneme
metric), which is better known in the psycholinguistic
literature as neighborhood density (Luce & Pisoni, 1998).
Henceforth, we will use the term degree/neighborhood density
to reflect the fact that two different fields are describing the
same concept. A node that has high degree/neighborhood
density is connected to many other nodes (e.g., cat in Fig-
ure 1), whereas a node that has low degree/neighborhood
density is connected to few other nodes (e.g., dog in Fig-
ure 1). It has long been known in speech perception (Luce
& Pisoni, 1998) that as the degree/neighborhood density
of a word increases, the slower and less accurately that
word is responded to.

Finally, some network measures assess the meso-level,
or aspects of the network that lie somewhere between an
individual (micro-level) and the whole network (macro-level ).
One such measure is closeness centrality, which measures
the distance from one node to all other nodes in the net-
work (following the shortest path between any two nodes
being considered). For a given node, closeness centrality
takes into consideration only those nodes that reside within
its particular connected component (i.e., the giant compo-
nent or an island) as these are the only possible nodes that
it could be connected to. Hermit nodes, which are not con-
nected to any other node, would have a closeness centrality
value of 0. A node that has a closeness centrality value close
to 1 tends to be close to other nodes in the network. That
is, one can get from that node to any other node in the net-
work by traversing relatively few connections. On the other
hand, a node that has a closeness centrality value close to
0 tends to be far away from other nodes in the network. In
this case, one must traverse many connections to get from
that node to any other node in the network.

Vitevitch and Castro (2015) found in a picture-naming
task (often used to examine speech production) that individ-
uals with aphasia and healthy controls named words with
high closeness centrality (i.e., words that are close to other
words in the lexicon) less accurately than words with low
closeness centrality (i.e., words that are far away from other
words in the lexicon). They proposed that more competi-
tion during word retrieval occurs for words with high close-
ness centrality because of their many close connections,
whereas words with low closeness centrality would be easier
to produce because they are more distant from other nodes
in the network.

The Present Study
Evidence suggests that children and AWS have

subtle, subclinical differences in their phonological process-
ing abilities as compared with typically fluent peers (e.g.,
Byrd, McGill, & Usler, 2015; Byrd, Vallely, Anderson,
& Sussman, 2012; Newman & Bernstein Ratner, 2007;
Pelczarski & Yaruss, 2014, 2016; Sasisekaran & De Nil, 2006;
Sasisekaran & Byrd, 2013; cf. Bosshardt & Fransen, 1996;
Hennessey, Nang, & Beilby, 2008), yet these differences
are not yet well understood and not always revealed during
1911–1918 • July 2017
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traditional behavioral tasks. Vitevitch and Castro (2015)
examined archival data of picture-naming performance
from individuals with aphasia and healthy controls to illus-
trate how network science measures can be used to better
understand the process of speech production in clinical pop-
ulations. In the present study, we conducted a similar
analysis of previously collected data from a lexical decision
task with AWS and adults who do not stutter (AWNS)
to determine if network science measures may provide ad-
ditional insight into the organization and structure of a
potentially less efficient phonological system.

Method
Data from a previously conducted lexical decision

task were obtained from a larger study designed to examine
the phonological processing abilities of AWS and AWNS
(Pelczarski, 2011). Participants included 19 AWS paired by
sex, age, and education level to 19 AWNS. Groups each
consisted of 14 men and 5 women who ranged in age from
22 to 45 years (mean age AWS, M = 32.68; mean age
AWNS,M = 33.21). Inclusionary criteria for the AWS group
included self-identification as a person who stutters, a se-
verity rating of at least mild from the Stuttering Severity
Instrument–Fourth Edition (Riley, 2009), and demonstration
of at least 3% stuttered speech. Stuttering severity for the AWS
ranged from mild to severe, and those who did not meet
the inclusionary criteria were included in the AWNS group.

In addition to the matching criteria, participants
were administered standardized tests of expressive and
receptive vocabulary (Expressive Vocabulary Test [EVT],
Williams, 1997; Peabody Picture Vocabulary Test–Third
Edition, [PPVT-III], Dunn & Dunn, 1997) to ensure that
vocabulary size was not a confounding factor. Groups per-
formed similarly on the vocabulary measures (EVT: t = .829;
p = .163; PPVT-III: t = .946; p = .357), suggesting that the
participants were well matched in this regard.

Stimuli for the lexical decision task consisted of words
and nonwords balanced according to length, word frequency,
and phonotactic probability. They were digitally recorded
Table 1. Model-building procedure and significance predicting reactio

Variable

Model 1: Traditional psycholinguistic variables
Len + WF

Model 2: Add participant group
Len + WF + Group

Model 3: Add network measures
Len + WF + Group + Deg + CC + Comp

Model 4: Add interactions between group and psycholinguistic variabl
Len + WF + Group + Deg + CC + Comp + Group × Len + Group × W

Model 5: Add interactions between group and network measures
Len + WF + Group + Deg + CC + Comp + Group × Len + Group ×

WF + Group × Deg + Group × CC + Group × Comp

Note. Len = word length; WF = log word frequency; Deg = degree/neig
aThe final model used in the present analysis was Model 4.
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by a standard American English–speaking woman and pre-
sented with E-Prime (Schneider, Eschman, & Zuccolotto,
2002). Participants listened to the stimuli via headphones
and were instructed to use a single finger to press a button
for “word” or “nonword” and to return the finger to a central
home-base location between trials. Reaction times were
obtained via button press and recorded in milliseconds in
E-Prime.

Thirty real words were examined in the present net-
work analysis (see Appendix B). Nonwords by definition do
not exist in the lexicon and therefore were not examined here.

A multiple regression model was used to predict re-
action time during the lexical decision task using R software
(R Core Team, 2016). This type of analysis allows us to
examine the effect of one particular measure while con-
trolling for a number of other possible variables. Following
Vitevitch and Castro (2015), a model-building procedure
was done to determine if participant group and/or network
measures explained additional variance in reaction time
beyond traditionally studied psycholinguistic variables (see
Table 1). An analysis of variance between models was done
to determine if the addition of predictors significantly add
to the model. In the initial regression model, we included
well-known linguistic variables of word length (i.e., number
of phonemes) and word frequency (i.e., the frequency with
which a word occurs in the language). In the next model,
we included a variable reflecting participant group, in this
case AWS and AWNS. The participant variable did not
add significantly to the model but was kept because of
its relevance to the research question. In the third model,
we included the network science measures found to have
significant effects in Vitevitch and Castro (2015): degree/
neighborhood density, closeness centrality, and location
within the network. These network measures added signifi-
cantly to the model and were kept.

Finally, two models were tested that included inter-
action terms between participant group and the other vari-
ables. A model with interactions between participant group
and the traditional psycholinguistic variables was found
to be significant, and those interaction terms were kept.
n time.a

Adjusted R2
Analysis of
Variance (p)

.1436

.1427 .82

.1707 < .001

es .1769 < .01
F

.1747 .88

hborhood density; CC = closeness centrality; Comp = component.
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Figure 2. Interaction of word length and group predicting reaction
time on a lexical decision task. The two groups are adults who
stutter and adults who do not stutter. Word length ranges in the data
set from two to 11 phonemes but is plotted as one to 10 because
of centering. The predicted reaction time given the interaction is
plotted at each endpoint. The 95% confidence interval of the slope
for each regression line is displayed at each endpoint.

Figure 3. Interaction of word frequency and group predicting
reaction time on a lexical decision task. The two groups are adults
who stutter and adults who do not stutter. Word frequency ranges in
the data set from 0.30 to 6.06. The predicted reaction time given the
interaction is plotted at each endpoint. The 95% confidence interval
of the slope for each regression line is displayed at each endpoint.
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However, a model with interactions between participant group
and the network measures was not significant, and those
interaction terms were removed. It may be possible that there
were not sufficient enough data to find significant interactions.
The final model contained word length, word frequency,
participant group, degree/neighborhood density, closeness
centrality, component, interaction between group and word
length, and interaction between group and word frequency.

Word length was centered at one phoneme and
ranged from two to 11 phonemes (M = 5.8, SD = 2.64).Word
frequency counts came from Kučera and Francis (1967;
we added 1 to each value and then performed a log10
transformation) and ranged from 0.3 to 6.06 (M = 3.04,
SD = 1.17). For group, we coded AWNS as 0 and AWS
as 1. Degree/neighborhood density (we added 1 to each
value and performed a log10 transformation; Vitevitch, 2008)
ranged from 0 to 1.51 (M = 0.54, SD = 0.54). Closeness
centrality ranged from 0 to 1 (M = 0.22, SD = 0.30). For
component, words in the giant component were coded as
0 and words outside the giant component (i.e., islands and
hermits) were coded as 1.

Results
As reported in Pelczarski (2011), AWS and AWNS

distinguished real words from nonwords in the lexical deci-
sion task with equal accuracy for the real words (χ2 = 0.131;
p = .936) and for the nonwords (χ2 = 0.171; p = .917).
Although AWS have been reported to have generally slower
nonspeech motor movements (for a review, see Bloodstein
& Bernstein Ratner, 2007), both groups were comparable
in terms of reaction times (t= 1.15; p = .272). Traditional
statistical analyses did not reveal any between-group differ-
ences; however, the analyses we report below revealed several
interesting findings.

Table 2 lists each variable in the final model and its
regression coefficient, standard error, and p value. The
main effects of word length, word frequency, and group
should be interpreted in the context of the significant inter-
actions. Using the online utility developed by Preacher,
Curran, and Bauer (2006), the interactions were plotted
in Figures 2 and 3. The interaction of word length and
Table 2. Statistical results predicting reaction time on a lexical decision
task performed by adults who stutter (AWS) and do not stutter.

Variable Coefficient Standard error p value

Word length 2.31 5.58 .68
Word frequency −43.75 7.63 <.001
Group (AWS) 121.64 45.06 <.001
Degree/neighborhood

density
115.77 27.79 <.001

Closeness centrality −80.09 26.17 .002
Component (outside GC) −3.73 29.09 .90
Length × Group −12.49 5.12 .01
Log Word Frequency ×

Group
−22.05 10.53 .04

Note. GC = giant component.

1914 Journal of Speech, Language, and Hearing Research • Vol. 60 •
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group showed that AWS responded significantly more
slowly than AWNS when words are short (e.g., at one
phoneme: p < .001) but not when words are longer (e.g.,
at 10 phonemes: p = .94). Specifically, the region of
significance suggests that the point of significance between
the two groups in word length lies at approximately four
phonemes. That is, AWS responded significantly more
slowly than AWNS when words were four phonemes
or fewer, but there was no significant difference between
the two groups when words were longer than four pho-
nemes. In addition, the individual slope for AWNS is not
1911–1918 • July 2017
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significant (p = .68), whereas the individual slope for AWS
is marginally significant (p = .07).

The interaction of word frequency and group showed
that AWS responded significantly more slowly in the lexical
decision task than AWNS when words are of low frequency
(e.g., at 0.5: p < .01) but not when words are of higher word
frequency (e.g., at 6: p = .77). Specifically, the region of
significance suggests that the point of significance between
the two groups in word frequency lies at approximately 3.2.
That is, AWS responded significantly more slowly than
AWNS when words have a frequency value of 3.2 or less,
with no significant difference between the two groups when
words have a frequency value greater than 3.2. In addition,
the individual slope for AWNS and AWS is significant (both
ps < .001). That is, for both groups, as word frequency
increases, reaction times decrease, replicating a long-known
influence of word frequency on lexical processing (Whaley,
1978).

A main effect of degree/neighborhood density was
found in the present study such that as degree/neighborhood
density increased, reaction time also increased. That is, words
with higher degree/neighborhood density were responded
to more slowly in the lexical decision task than words with
low degree/neighborhood density. This finding replicates
previous studies of spoken word recognition (e.g., Luce &
Pisoni, 1998).

A main effect of closeness centrality was also observed,
such that as closeness centrality increased, reaction time
decreased. Recall that closeness centrality measures the
distance from one node to all other nodes in the network
(following the shortest path between any two nodes being
considered). Therefore, words with high closeness centrality
(or words that are close to many words in the network) were
responded to more quickly than words with low closeness
centrality (or words that are far from many other words in
the network). Finally, although Vitevitch and Castro (2015)
found that during a picture-naming task, individuals with
aphasia and healthy controls produced words found outside of
the giant component more accurately than words in the giant
component, there was no significant effect of a word being
inside/outside the giant component in the present analysis.

Discussion
Several main effects were revealed in this analysis.

Expected effects for closeness centrality and neighborhood
frequency were found for both groups; however, the two
main effects for word length and word frequency that
distinguished the groups will be discussed first. AWS dem-
onstrated a reverse word-length effect, wherein longer
reaction times were observed for shorter stimuli than for
longer stimuli. AWNS did not show this effect. Reverse
word-length effects have been reported previously in studies
using immediate serial recall in situations in which phono-
logical maintenance is challenging (e.g., in unpredictable
lists of words and nonwords). Jefferies, Frankish, and Noble
(2011) suggested that longer words are remembered better
because the phonological code is bolstered through access to
ded From: http://jslhr.pubs.asha.org/pdfaccess.ashx?url=/data/journals/jslhr
f Use: http://pubs.asha.org/ss/rights_and_permissions.aspx
preexisting representations in the lexicon (i.e., redintegration),
particularly when there is difficulty in the phonological
maintenance system. Delayed or disordered phonological
encoding and phonological memory abilities in AWS could
be considered a situation in which phonological maintenance
is difficult. Some researchers have argued that difficulties in
phonological encoding of children and AWS may be medi-
ated at times by support from long-term lexical representa-
tions (Pelczarski, 2011; Pelczarski & Yaruss, 2016), although
more research is needed in this area.

Word frequency was the second significant main
effect. AWS responded more slowly to low-frequency words
than high-frequency words as compared with AWNS, sug-
gesting that the planning or retrieval of phonetic codes for
less frequently spoken words may be delayed. Low-frequency
words in particular seem to be more susceptible to disfluen-
cies in AWS. Several studies have reported that stuttering
occurred more frequently on low-frequency words than
high-frequency words in adults (Hubbard & Prins, 1994;
Newman & Bernstein Ratner, 2007; Soderberg, 1966) and
in children (Anderson, 2007; Palen & Peterson, 1982;
Ratner, Newman, & Strekas, 2009). The slower reaction
times for low-frequency words in a lexical decision task
provides further evidence that some aspect of phonological
processing is delayed in AWS.

The effect of neighborhood density was present in
both groups and did not distinguish between speaker groups.
Recall that degree/neighborhood density refers to the num-
ber of words that sound similar to a target word. A word
with high degree/neighborhood density has many words
that sound similar to it, whereas a word with low degree/
neighborhood density has few words that sound similar
to it. The findings of the present study replicate previous
findings (e.g., Luce & Pisoni, 1998), such that as degree/
neighborhood density increases, word recognition is slower
and less accurate in both AWS and AWNS.

Less work has examined the influence of closeness
centrality on word recognition. Recall that closeness central-
ity is a measure that identifies “important” nodes in the
system. Words with high closeness centrality tend to be
close to other words in the network, whereas words with
low closeness centrality tend to be far from other words
in the network. Iyengar, Madhavan, Zweig, and Natarajan
(2012) used an off-line word-morph task to examine the
influence of closeness centrality. In the word-morph task,
participants had to “morph” one word (e.g., bay) into another
word (e.g., egg) by changing one letter at a time. Participants
completed the game more quickly when they used “landmark”
words, which upon subsequent analysis by Iyengar et al.,
turned out to be words with high closeness centrality (e.g.,
aid ). In the present study, we found that as closeness cen-
trality increased, reaction time decreased for both AWS
and AWNS. The “landmark” words with high closeness
centrality seem to stand out more among the other words
in this word recognition task, making lexical discrimina-
tion easier during spoken word recognition.

It is important to note that the meso-level measure of
closeness centrality findings seems to be in contradiction to
Castro et al.: Network Science and Adults who Stutter 1915
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those found for the micro-level measure degree/neighborhood
density. In the case of degree/neighborhood density, having
many connections was detrimental (i.e., slower reaction
times). However, with closeness centrality, words that were
more connected to the entire network (i.e., words with high
closeness centrality) had an advantage (i.e., faster reaction
times). The difference between these two measures is critical.
Degree/neighborhood density takes into consideration only
those nodes that are immediately connected to the target
node, whereas closeness centrality takes into consideration
all nodes in the network. It may be the case that being more
connected to the entire network (i.e., high closeness central-
ity) may make the initial search for a lexical item quicker.
That is, words with high closeness centrality are easily iden-
tifiable “landmarks” among the mass of words in the lexicon.
But once one zooms in to the more local neighborhood of
a particular word, having more immediate connections (i.e.,
degree/neighborhood density) may make discrimination of
the target from those neighbors more difficult.

Lastly, the location of a node in the network allows
for an examination of the network at the macro-level. Recall
that Vitevitch (2008) found that nodes could reside in the
interconnected giant component, in a small connected island
distinct from the giant component, or as a hermit not con-
nected to any other node in the network. Previous studies
(Siew & Vitevitch, 2016; Vitevitch & Castro, 2015) have
found that words located outside of the giant component
(i.e., island and hermit words) have a processing advantage
over words located in the giant component in both word
recognition and production tasks. The present study, how-
ever, did not find a significant effect, which may have been
due to a lack of power (i.e., fewer words in the present anal-
ysis) to detect the influence if it was present.

The phonological encoding of AWS is frequently
referred to as being “disordered” or “delayed,” but it
is challenging to determine exactly what aspect of phono-
logical encoding is aberrant using purely behavioral tasks.
The subtle phonological processing differences AWS display
could be due to a disorganized or weakened phonological
network structure, to a less robust/stable phonological repre-
sentation, or even to a delayed or disrupted retrieval of
the phonological code. Although the AWS and AWNS
behaved differently in response to different psycholinguistic
variables, network analyses of the current data revealed
expected network effects (degree/neighborhood density and
closeness centrality) for both groups, suggesting that the
structure of the phonological network in AWS is similar to
its typically fluent counterparts. This brings us one step
closer to more fully understanding the nature of the phono-
logical encoding differences between AWS and AWNS by
potentially ruling out structural differences in the phono-
logical network. This finding contrasts with findings from
studies of the semantic network, where structural differ-
ences between typically developing and late-talkers are ob-
served (Beckage et al., 2011). Future studies using network
science measures may help us further explore whether the
robustness of the phonological representations or the
efficiency of phonological retrieval may be disrupted in
1916 Journal of Speech, Language, and Hearing Research • Vol. 60 •
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AWS. This discovery would not have been possible with
traditional psycholinguistic measures.

The present study allows us to move beyond the
reductionist approach of contemporary psycholinguistics,
which focuses only on examination of the individual word
(e.g., how frequently a word is used). The present findings
clearly illustrate the importance of examining measures that
can account for differences in speech processing above and
beyond what traditional psycholinguistic measures can
account for. Specifically, the use of the network science
approach—a more holistic approach—enables us to exam-
ine the relationships and interactions among entities. It is
in these relationships and interactions that we might gain
a better understanding of speech and language processes in
a variety of clinical populations.

Furthermore, the network science approach allows
us to examine multiple levels of a system. Again, traditional
psycholinguistics tends to focus on characteristics of the
individual word, or what the network science approach
refers to as the micro-level. In contrast, the network science
approach also allows for an examination of the meso- and
macro-levels of a system. Importantly, as shown in the pres-
ent study, different structural characteristics at different
levels of the system may have different influences on process-
ing. As noted by Watts and Strogatz (1998), the structure
of the network has important implications for how process-
ing occurs in that network. Therefore, we must consider
how words are connected in the entire network and at vari-
ous levels of the network to better understand speech pro-
cessing. In this study, we found that a micro-level measure
(i.e., degree/neighborhood density) and a meso-level mea-
sure (i.e., closeness centrality) influenced word recognition
processes. The latter influence would not have been found
had only traditional psycholinguistic methods and measures
been employed. Although the macro-level measure (i.e.,
component) was not found to be significant in this study,
further research ensuring greater variability of this measure
may provide different results.
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Appendix A

List of network measures discussed in the text
efinition Formula

of connections
ely connected to

ki, the number of nodes to
which node i is connected

from one node to all
sible nodes in the
ollowing the shortest
een any two nodes
sidered; this value
m 0 to 1

Closeness ( i ) = 1/Σ j dij, where i
is the node of interest, j is
another node in the network,
dij is the shortest distance
between the two nodes

of a node in the
twork

A node can reside in one of
three locations: the giant
component, a smaller
component called an island,
or as an isolated hermit
Appendix B

List of real words used in the lexical decision task in Pelczarski (2011)
uman popular community
ffervesce pajamas palpitation
hysical contract experience
ompany computer organization
useum equipment quintuplet
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