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The network characteristics based on the phonological similarities in the lexicons of several lan-
guages were examined. These languages differed widely in their history and linguistic structure,
but commonalities in the network characteristics were observed. These networks were also found
to be different from other networks studied in the literature. The properties of these networks
suggest explanations for various aspects of linguistic processing and hint at deeper organization
within the human language.
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1. Introduction

The results of numerous graph-theoretic analyses
suggest that a number of principles may influence
the emergent structures found in a wide variety
of complex systems, including information, social,
technological and biological networks [Strogatz,
2001; Albert & Barabási, 2002; Newman, 2003].
These unifying characteristics include small-world
properties, distinct community structure and scale-
free distributions of the network connectivity.

Many aspects of language can be examined
from a network perspective as well. Numerous stud-
ies have been conducted on semantic networks,
where relationships in meaning have been created
between words. These are often based on the-
sauri, word-associations in corpori or from academic

databases [Ferrer & Ricard, 2001; Motter et al.,
2002]. In addition, linguistic networks have formed
from orthographic similarities of words (how words
are spelled) [Kello & Beltz, 2007]. Lastly, language
can be viewed from the sounds of words (their
phonological structure), where words that sound
similar are neighbors. Although previous experi-
ments have examined small portions of phonolog-
ical networks (nearest neighbors of words) in the
context of psycholinguistic theories of spoken word
recognition [Luce & Pisoni, 1998], the first graph-
theoretic analysis of an entire language network
only appeared more recently [Vitevitch, 2008].

In these phonological networks, words in a lan-
guage are represented as vertices or nodes, and
an edge is placed between them if the words sound
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Fig. 1. A phonological network for five English words.

similar to each other (differing only by a sin-
gle phoneme, or sound segment). For example, as
shown in Fig. 1, vertices representing the words
hand, send, sad, and and stand would all have edges
connecting them to the vertex for the word sand.
These phonological networks are especially intrigu-
ing to examine because psycholinguistic studies
suggest that several characteristics of the network
influence cognitive processing, such as word recog-
nition and retrieval [Steyvers & Tenenbaum, 2005;
Vitevitch, 2008]. In addition, much work has shown
that degree influences word recognition [Luce &
Pisoni, 1998], word production [Vitevitch, 2002],
and word learning [Storkel et al., 2006]. Further-
more, it has been recently demonstrated that clus-
tering coefficients also influence production and
recognition [Chan & Vitevitch, in press; Chan &
Vitevitch, 2009].

In examining English, Vitevitch [2008] found
that its phonological network had a small giant
component (the largest connected portion of the
graph), with many other smaller components
(“islands”). This property is distinct from most
other complex networks observed in the literature.
In addition, the degree distribution (the distribu-
tion of the number of edges per node) was not well
modeled by a scale-free distribution, or a power law,
and was not well-approximated by a Poisson distri-
bution. This is surprising since it is reasonable to
expect a power law as in a preferential attachment
model [Barabási & Albert, 1999], as it has been
shown that words in the lexicon with high degree
tend to have novel words attached to them more
easily than words in the lexicon with low degree
[Storkel et al., 2006].

Here, we aimed explore the generality of these
results, by doing the first comparative study of
multiple languages, using phonological networks.
Similar network characteristics across a variety of
languages would hint toward principles that are

common to all languages, whereas differences in net-
work measures would provide a quantitative way to
describe and categorize the languages of the world.
For example, while relatively little cross-linguistic
research has been done in psycholinguistics, it
has been shown that degree has different influ-
ences in English compared to Spanish [Vitevitch
& Rodŕıguez, 2005; Vitevitch & Stamer, 2006].
Due to this, it is important to evaluate other net-
work characteristics across languages in order to
get a better understanding of language processing
in general. The findings in English and Spanish
suggest that the same structure might have a dif-
ferent influence in a different language as a func-
tion of other “structural” characteristics that are
not captured in current measures [Arbesman et al.,
in preparation]. We examined some of the properties
examined by Vitevitch in English, as well as a num-
ber of others, and found that phonological networks
all have certain properties distinct from other types
of complex networks (such as biological and social
networks).

2. Methods

The network structure of selected languages was
examined to determine the generality of the net-
work characteristics previously observed in English
[Vitevitch, 2008]. In addition to English, the fol-
lowing languages were examined: Spanish, Man-
darin, Hawaiian and Basque (see Table 1). These
languages are representative examples of different
language families and are of wide variety in their
linguistic properties.

English is an Indo-European language from the
Germanic branch, whereas Spanish comes from the
Romance branch of the Indo-European family of
languages. Mandarin, a Sino-Tibetan language, dif-
fers from English, Spanish, Hawaiian and Basque
in that it also uses tones to convey word meanings
(e.g. “fan” with a high level tone means sail, with
a rising tone means trouble, with a dipping tone
means turn, and with a falling tone means rice).
Tone was not included in the phonological tran-
scriptions, however. Hawaiian is an Austronesian
language with a phoneme inventory (the number
of consonants and vowels in the language) that is
smaller than those found in English, Spanish, Man-
darin and Basque. Finally, Basque (or Euskara) is
a linguistic isolate, meaning that it is not (or has
not yet been identified as) a member of a given lan-
guage family. Additional differences, such as those
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Table 1. Summary information of phonological networks in several languages. GC stands for Giant Component and RN stands
for Random Network. ASPL stands for Average Shortest Path Length.

English Spanish Mandarin Hawaiian Basque

Network Size (number of words) 19,323 122,066 30,086 2,578 99,321
Giant Component Size (fraction) 6,498 (0.34) 44,833 (0.37) 19,712 (0.66) 1,406 (0.55) 35,173 (0.35)
Assortative Mixing by Degree (r) 0.657 0.762 0.654 0.556 0.719
ASPL 2.7 4.3 6.5 3.2 4.4
ASPL (GC) 6.1 10.3 10.1 5.5 10.4
ASPL of RN (using GC) 5.8 9.9 7.3 5.8 11.4
Clustering Coefficient 0.284 0.191 0.383 0.241 0.206
Clustering Coefficient of RN 8.35e-5 1.17e-5 8.55e-5 7.40e-4 1.21e-5
Transitivity 0.313 0.250 0.404 0.260 0.232
Ratio of Edges to Vertices 1.61 1.43 2.57 1.91 1.21
Ratio of Edges to Vertices (GC) 4.55 2.95 3.88 3.44 2.50

in morphology, exist among the languages that were
selected for the present network analyses.

The phonological networks were constructed
from a variety of sources. The English network
contained the words from the Merriam-Webster
Pocket Dictionary from 1964; this database has
been used extensively in psycholinguistic studies
[Luce & Pisoni, 1998]. The Hawaiian network was
created in a similar manner using a Hawaiian Dic-
tionary [Judd, 1980]. The words from the Spanish
network consisted of the words in the LEXESP
database [Sebastián-Gallés et al., 2000], a large
Spanish language corpus. The words in the Basque
network were obtained in a manner similar to the
words in the Spanish network [Perea et al., 2006].
The Mandarin network uses the words from a
database compiled in [Huang et al., 1997].

3. Results

3.1. Unique characteristics of the
giant component

3.1.1. Giant component size

The giant component sizes of the language networks
were much smaller compared to other networks dis-
cussed in the literature. Typically, the giant compo-
nent contains approximately 80–90% of the vertices
[Newman, 2001]. However, in the present networks,
the proportion of vertices in the giant component
was much smaller, with some networks having less
than 50% of the vertices in the giant component.
The proportion of vertices in the giant components
for comparably sized random networks, contain-
ing 70–80% of the vertices, are also larger than
the values for the language networks [Callaway
et al., 2001]. This difference in giant component size

suggests that these phonological networks may be
more robust to node removal due to more tightly
connected components, and indicates the prevalence
of smaller components in the networks.

3.1.2. Robustness to vertex removal

In many systems studied to date, the mapping of
node removal to its real-world equivalent is rel-
atively intuitive (e.g. node removal in a network
modeling an ecosystem is equivalent to a species
becoming extinct). A reasonable linguistic analogue
to node removal is that of the tip-of-the-tongue
phenomenon, or similar situations where you know
that you know the word (you have likely used it
before), you have access to semantic information
about it (you can describe it to people), yet the
phonological word-form is temporarily inaccessible,
since its activation does not cross the threshold for
retrieval. It turns out that degree (i.e. neighbor-
hood density) influences the likelihood that a word
will be on the tip of the tongue [Vitevitch & Som-
mers, 2003], so understanding network structure
and node removal might provide some insight into
which words are likely to be vulnerable to the tip-
of-the-tongue state, or suggest strategies to recover
from it.

To evaluate the robustness of the networks, ver-
tices were removed in two ways: at random, and
in decreasing order by degree (number of edges
connected to a vertex). These results are shown
in Fig. 2. In scale-free networks, when vertices
are randomly removed the mean shortest path
length remains constant, whereas when vertices are
removed in order of degree, the mean shortest path
length increases dramatically [Newman, 2003]. In
the language networks, however, both methods of
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Fig. 2. An example run of node removal in English, either
random or in a targeted fashion (in order by degree). Up
to 5% of the nodes were removed, and all languages showed
similar patterns to the above results. In addition, when the
simulations were done only for the giant component, a similar
constant, though elevated, value of the average shortest path
length was found.

node removal resulted in little to no change in
the mean shortest path lengths. The shortest path
lengths were calculated using a sampling technique
where 1000 nodes were chosen at random. Then,
the distances to all other nodes (if part of the same
component) were obtained and these path lengths
were then all averaged, to give an estimate of the
shortest path length. This sped up the calculations
considerably. The extraordinary amount of robust-
ness observed based on these common methods of
node removal does seem intriguing and merits fur-
ther examination.

3.1.3. Assortative mixing

In addition, we examined the assortative mixing by
degree of the language networks, which is a measure
of the correlation of degree between neighboring
nodes. As seen in Table 1, all of the language net-
works had large and positive correlations of the
degrees of connected vertices, indicating that high
degree vertices tended to be connected to each
other. Newman [2002] discussed how networks with
assortative mixing by degree are more robust to
vertex removal and percolate more easily (i.e. dis-
eases or information spread easily) than networks
with disassortative mixing. The high assortative
mixing observed in the phonological networks is
distinct from other types of networks: biological
and technological networks often are disassorta-
tively mixed, and social networks, which display

assortative mixing, still have lower values of assor-
tative mixing. Typical measures of assortativity
for social networks are 0.1–0.3, and biological and
technological networks are −0.1 to −0.2 [Newman,
2002]. On the other hand, phonological networks
can be higher than 0.7.

High assortative mixing not only suggests
robustness in the phonological networks, and high-
lights the resilience of lexical processing in the
face of injury to the language related areas of the
brain (i.e. stroke, or even the tip-of-the-tongue phe-
nomenon discussed above), but it also has impli-
cations for the searchability of the phonological
networks under intact conditions [Watts et al.,
2002]. This feature of the phonological network may
contribute to the high rates of accuracy with which
words are retrieved from the mental lexicon; one
study estimated that healthy adult speakers make
an error between 0.1–0.2% of the time they speak
[Garnham et al., 1981]. Lexical processing might
proceed more slowly and errors in word retrieval
might be more common if the phonological networks
did not have such a robust structure. The phono-
logical networks of patients with aphasia or other
neurogenic disorders that disrupt language process-
ing could be used to test this hypothesis.

3.2. Small-world properties

Although the languages differ in their history and
linguistic characteristics, they all share a number of
similarities in their network structure. An impor-
tant commonality across the languages is that they
all have the properties of a small-world network
[Watts & Strogatz, 1998], that is, a high clustering
coefficient and short vertex-to-vertex distance. The
clustering coefficient can be calculated for each node
(the average value of which is reported in Table 1),
and is the fraction of neighbors of a given node that
are neighbors with each other. It is also known as
network density. The vertex-to-vertex distance, also
known as the shortest path length, is the shortest
number of hops in a network to go from one node
to another. Since these networks have many com-
ponents, the shortest path length from one node
to another is only calculated for nodes that are in
the same component [Newman, 2003]. In addition,
the mean shortest path length was calculated just
within the giant component of each language.

As seen in Table 1, the values for the clustering
coefficient are many orders of magnitude larger than
what would be expected from a comparably sized
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random network — a network with the same num-
ber of nodes and edges — which can be calculated
analytically [Watts & Strogatz, 1998]. The values
of the clustering coefficient are also comparable to
a similar measure referred to as transitivity, which
is a more global measure of clustering [Newman,
2003].

On the other hand, the mean shortest path
length of the language networks giant component,
calculated using a random sample of 1000 nodes,
was similar to the mean shortest path length for
comparably sized random networks, and signifi-
cantly shorter than the overall number of nodes in
the network, as seen in Table 1 [Watts & Strogatz,
1998]. The statistics of the giant component were
used for comparable random networks, because the
overall ratio of edges to nodes is far lower than
within the giant component, due to the large num-
ber of islands in the networks.

Since a small world structure is often a prereq-
uisite for rapid search, and it is well-known that
lexical retrieval processes are rapid and robust,
it would be logical that the networks might be
optimally structured for search. A clear future
research direction is the examination of these net-
works for the properties, such as those discussed in
[Kleinberg, 2000], that allow for rapid and robust
search.

In addition, there exists the possibility of
search (both in word recognition and production)
within more than the single dimension of phono-
logical similarity, which could include such addi-
tional dimensions as semantic similarity or syntatic
relationships. This would lead to what would effec-
tively be a fully connected network, where the other
dimensions would guide search within the initial
search space.

However, it must be noted that, unlike in social
networks, where it is clear what a distance of
three friends is, for example, it is not entirely clear
what the qualitative difference is between a dis-
tance of 5 and 6 within phonological networks. This
is important when looking at the average shortest
path lengths of the giant components of the differ-
ent language networks. For instance, is it relevant
that this value for Mandarin (10.1) is twice that of
Hawaiian (5.5)? While it is likely that this number
is most relevant relative to the size of the entire net-
work (they are all orders of magnitude smaller than
the size of the lexica examined), these differences
might hint at more significant distinctions between
the languages examined.

The common occurrence of the small world
property in networks observed in the literature may
suggest that it is less a relevant property of lan-
guage (since it is not unique to language) than sim-
ply an indicator that language is a fairly organic,
unplanned construct. It is interesting, however, that
the path length within a network appears to be
an important property for language processing. A
recent study [Yarkoni et al., 2008] demonstrated
that a measure related to path length in a phono-
logical network (i.e. the minimum number of sub-
stitution, insertion, or deletion operations required
to turn one word into another) influenced pronunci-
ation times in visual word recognition tasks. There-
fore, the relevance of different average path length
across languages warrants further investigation.

3.3. Degree distribution

The degree distributions of scale-free networks obey
a power law function, P (z) ∼ z−α. In contrast to
many observed networks, we find that the language
networks deviate from this behavior. Instead, they
are reasonably fit to truncated power laws, similar
to scientific coauthorship networks [Newman, 2001],
as seen in Table 2. A truncated power law, or a
power law with an exponential cutoff, is defined as
follows:

P (z) ∼ z−αe−z/zc (1)

Table 2 shows the parameters of the best fit of
a truncated power law for the degree distribution of
each language, as calculated by the methods found
in [Clauset et al., 2007]. All fits had p-values of less
than 10−10, in terms of the probability that they
were better fit by a truncated power law than a
traditional power law. In addition, as can be seen,
Mandarin’s fit is essentially an exponential distri-
bution, with no power-law portion.

As mentioned earlier, it is reasonable to expect
a power law as in a preferential attachment model

Table 2. Languages and best fit parameters
for a truncated power law. All fits had p-values
of less than 10−10.

Language Exponent (α) Cutoff (zc)

English 0.826 16.14
Spanish 0.815 7.06
Mandarin −1.0 3.69
Hawaiian 0.270 7.34
Basque 0.575 4.56
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Fig. 3. The degree distributions of two of the language networks (English and Spanish), on a log–log scale. The final point
for each distribution was not plotted, for legibility.

[Barabási & Albert, 1999], since it has been shown
that words in the lexicon with high degree tend to
have novel words attached to them more easily than
words in the lexicon with low degree [Storkel et al.,
2006]. However, Amaral et al. [2000] found that if
there is a constraint associated with the attachment
of a new vertex (i.e. the vertex may only be able
to accommodate a fixed number of edges), then a
power law degree distribution, like that in the scale-
free model proposed by Barabási and Albert [1999],
is not likely to be observed. In the language net-
works (Fig. 3), a variety of constraints on word for-
mation are present, such as the number of phonemes
in the inventory of the language, the sequential
arrangement of phonemes in words, the length of
words, and the extent to which the language relies
on morphemes (the smallest meaningful unit). All
of these constraints limit the number of words that
might be phonologically similar. Therefore, a trun-
cated power law or similar distributions that decay
faster than a traditional power law are reasonable
as fits for the degree distributions in phonological
networks.

4. Conclusion

The phonological networks of a variety of languages
show a unique structure not found in other com-
plex networks described in the literature. Despite
coming from a diverse range of language families
the networks all exhibited a common set of proper-
ties. Notably, the degree distribution is found to lie
somewhere between a power law and an exponential
distribution.

Furthermore, a small-world structure was
observed, in conjunction with the distinguishing

characteristic of the giant components as far smaller
than typically observed. The small sizes of the
giant component together with the strong assor-
tative mixing by degree and the robustness of the
network to the removal of vertices are suggestive to
the resilience of language processing in the brain,
although further study is necessary.

Together, these observed characteristics hint at
some deeper organization within language. Despite
surface differences among languages, there are
important commonalities that have implications for
the processing of language in humans. The intrigu-
ing characteristics of these networks merit further
investigation from network scientists as well as psy-
cholinguistic researchers.
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Valinã, M. F. & Cuetos-Vega, F. [2000] Lexesp. Léxico
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